scholarly journals Dynamics and Merger Rate of Primordial Black Holes in a Cluster

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 41
Author(s):  
Viktor D. Stasenko ◽  
Alexander A. Kirillov ◽  
Konstantin M. Belotsky

The PBH clusters can be sources of gravitational waves, and the merger rate depends on the spatial distribution of PBHs in the cluster which changes over time. It is well known that gravitational collisional systems experience the core collapse that leads to significant increase of the central density and shrinking of the core. After core collapse, the cluster expands almost self-similarly (i.e., density profile extends in size without changing its shape). These dynamic processes affect the merger rate of PBHs. In this paper, the dynamics of the PBH cluster is considered using the Fokker–Planck equation. We calculate the merger rate of PBHs on cosmic time scales and show that its time dependence has a unique signature. Namely, it grows by about an order of magnitude at the moment of core collapse which depends on the characteristics of the cluster, and then decreases according to the dependence R∝t−1.48. It was obtained for monochromatic and power-law PBH mass distributions with some fixed parameters. Obtained results can be used to test the model of the PBH clusters via observation of gravitational waves at high redshift.

2019 ◽  
Vol 624 ◽  
pp. A66 ◽  
Author(s):  
M. Renzo ◽  
E. Zapartas ◽  
S. E. de Mink ◽  
Y. Götberg ◽  
S. Justham ◽  
...  

We perform an extensive numerical study of the evolution of massive binary systems to predict the peculiar velocities that stars obtain when their companion collapses and disrupts the system. Our aim is to (i) identify which predictions are robust against model uncertainties and assess their implications, (ii) investigate which physical processes leave a clear imprint and may therefore be constrained observationally, and (iii) provide a suite of publicly available model predictions to allow for the use of kinematic constraints from the Gaia mission. We find that 22+26−8% of all massive binary systems merge prior to the first core-collapse in the system. Of the remainder, 86+11−9% become unbound because of the core-collapse. Remarkably, this rarely produces runaway stars (observationally defined as stars with velocities above 30 km s−1). These are outnumbered by more than an order of magnitude by slower unbound companions, or “walkaway stars”. This is a robust outcome of our simulations and is due to the reversal of the mass ratio prior to the explosion and widening of the orbit, as we show analytically and numerically. For stars more massive than 15 M⊙, we estimate that 10+5−8% are walkaways and only 0.5+1.0−0.4% are runaways, nearly all of which have accreted mass from their companion. Our findings are consistent with earlier studies; however, the low runaway fraction we find is in tension with observed fractions of about 10%. Thus, astrometric data on presently single massive stars can potentially constrain the physics of massive binary evolution. Finally, we show that the high end of the mass distributions of runaway stars is very sensitive to the assumed black hole natal kicks, and we propose this as a potentially stringent test for the explosion mechanism. We also discuss companions remaining bound that can evolve into X-ray and gravitational wave sources.


2009 ◽  
Vol 18 (03) ◽  
pp. 435-443 ◽  
Author(s):  
HERMAN J. MOSQUERA CUESTA ◽  
GAETANO LAMBIASE

Neutrino (ν) oscillations during the core collapse and bounce of a supernova (SN) are shown to generate the most powerful detectable gravitational wave (GW) bursts. The SN neutronization phase produces mainly electron (νe) neutrinos, the oscillations of which must take place within a few mean-free paths of their resonance surface located near their neutrinosphere. Here we characterize the GW signals produced by spin-flip oscillations inside the fast-rotating protoneutron star in the SN core. In this novel mechanism, the release of both the oscillation-produced νμ's, ντ's and the spin-flip-driven GW pulse provides a unique emission offset [Formula: see text] for measuring the ν travel time to Earth. As massive ν's get noticeably delayed on its journey to Earth with respect to the GW, they generate over the oscillation transient, the accurate measurement of this time-of-flight delay by SNEWS + LIGO, VIRGO, BBO, DECIGO, etc. can assess the absolute ν mass spectrum straightforwardly.


2016 ◽  
Vol 12 (S329) ◽  
pp. 428-428
Author(s):  
Ko Nakamura ◽  
Shunsaku Horiuchi ◽  
Masaomi Tanaka ◽  
Kazuhiro Hayama ◽  
Tomoya Takiwaki ◽  
...  

AbstractThe next Galactic supernova is expected to bring great opportunities for the direct detection of gravitational waves, full flavor neutrinos, and multi-wavelength photons. To prepare for appropriate observations of these multi-messenger signals, we use a long-term numerical simulation of the core-collapse supernova and discuss detectability of the signals in different situations. By exploring the sequential multi-messenger signals of a nearby CCSN, we discuss preparations for maximizing successful studies of such an unprecedented stirring event.


Derrida Today ◽  
2010 ◽  
Vol 3 (1) ◽  
pp. 21-36
Author(s):  
Grant Farred

‘The Final “Thank You”’ uses the work of Jacques Derrida and Friedrich Nietzsche to think the occasion of the 1995 rugby World Cup, hosted by the newly democratic South Africa. This paper deploys Nietzsche's Zarathustra to critique how a figure such as Nelson Mandela is understood as a ‘Superman’ or an ‘Overhuman’ in the moment of political transition. The philosophical focus of the paper, however, turns on the ‘thank yous’ exchanged by the white South African rugby captain, François Pienaar, and the black president at the event of the Springbok victory. It is the value, and the proximity and negation, of the ‘thank yous’ – the relation of one to the other – that constitutes the core of the article. 1


2016 ◽  
Vol 12 (2) ◽  
pp. 4255-4259
Author(s):  
Michael A Persinger ◽  
David A Vares ◽  
Paula L Corradini

                The human brain was assumed to be an elliptical electric dipole. Repeated quantitative electroencephalographic measurements over several weeks were completed for a single subject who sat in either a magnetic eastward or magnetic southward direction. The predicted potential difference equivalence for the torque while facing perpendicular (west-to-east) to the northward component of the geomagnetic field (relative to facing south) was 4 μV. The actual measurement was 10 μV. The oscillation frequency around the central equilibrium based upon the summed units of neuronal processes within the cerebral cortices for the moment of inertia was 1 to 2 ms which are the boundaries for the action potential of axons and the latencies for diffusion of neurotransmitters. The calculated additional energy available to each neuron within the human cerebrum during the torque condition was ~10-20 J which is the same order of magnitude as the energy associated with action potentials, resting membrane potentials, and ligand-receptor binding. It is also the basic energy at the level of the neuronal cell membrane that originates from gravitational forces upon a single cell and the local expression of the uniaxial magnetic anisotropic constant for ferritin which occurs in the brain. These results indicate that the more complex electrophysiological functions that are strongly correlated with cognitive and related human properties can be described by basic physics and may respond to specific geomagnetic spatial orientation.


2020 ◽  
Vol 501 (1) ◽  
pp. 269-280
Author(s):  
Xuheng Ding ◽  
Tommaso Treu ◽  
Simon Birrer ◽  
Adriano Agnello ◽  
Dominique Sluse ◽  
...  

ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution.


1996 ◽  
Vol 174 ◽  
pp. 363-364 ◽  
Author(s):  
Christian Einsel ◽  
Rainer Spurzem

Observations of Globular Cluster ellipticity distributions related to some fundamental parameters give strong evidence for a decay of rotational energy in these systems with time. In order to study the effectiveness of angular momentum transport (or loss, resp.) a code has been written which solves the Fokker-Planck equation in (E, Jz)-space and follows the evolution from some initial conditions through core collapse (and possibly gravothermal oscillations) up to the post-collapse phase. For the purpose of comparability with N-body simulations rotating initial model configurations according to the prescriptions of Lupton & Gunn (1987) have been constructed. These models are intended to continue previous work by Goodman (1983, Fokker-Planck) and Akiyama & Sugimoto (1989, N-Body). In this contribution the derivation of the flux coefficients is given.


Sign in / Sign up

Export Citation Format

Share Document