scholarly journals Bacterial Toxins from Staphylococcus aureus and Bordetella bronchiseptica Predispose the Horse’s Respiratory Tract to Equine Herpesvirus Type 1 Infection

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 149
Author(s):  
Eline Van Crombrugge ◽  
Emma Vanbeylen ◽  
Jolien Van Cleemput ◽  
Wim Van den Broeck ◽  
Kathlyn Laval ◽  
...  

Respiratory disease in horses is caused by a multifactorial complex of infectious agents and environmental factors. An important pathogen in horses is equine herpesvirus type 1 (EHV-1). During co-evolution with this ancient alphaherpesvirus, the horse’s respiratory tract has developed multiple antiviral barriers. However, these barriers can become compromised by environmental threats. Pollens and mycotoxins enhance mucosal susceptibility to EHV-1 by interrupting cell junctions, allowing the virus to reach its basolateral receptor. Whether bacterial toxins also play a role in this impairment has not been studied yet. Here, we evaluated the role of α-hemolysin (Hla) and adenylate cyclase (ACT), toxins derived from the facultative pathogenic bacterium Staphylococcus aureus (S. aureus) and the primary pathogen Bordetella bronchiseptica (B. bronchiseptica), respectively. Equine respiratory mucosal explants were cultured at an air–liquid interface and pretreated with these toxins, prior to EHV-1 inoculation. Morphological analysis of hematoxylin–eosin (HE)-stained sections of the explants revealed a decreased epithelial thickness upon treatment with both toxins. Additionally, the Hla toxin induced detachment of epithelial cells and a partial loss of cilia. These morphological changes were correlated with increased EHV-1 replication in the epithelium, as assessed by immunofluorescent stainings and confocal microscopy. In view of these results, we argue that the ACT and Hla toxins increase the susceptibility of the epithelium to EHV-1 by disrupting the epithelial barrier function. In conclusion, this study is the first to report that bacterial exotoxins increase the horse’s sensitivity to EHV-1 infection. Therefore, we propose that horses suffering from infection by S. aureus or B. bronchiseptica may be more susceptible to EHV-1 infection.

Vaccine ◽  
2008 ◽  
Vol 26 (19) ◽  
pp. 2335-2343 ◽  
Author(s):  
Cristina Rosas ◽  
Gerlinde R. Van de Walle ◽  
Stephan M. Metzger ◽  
Karin Hoelzer ◽  
Edward J. Dubovi ◽  
...  

2017 ◽  
Vol 51 ◽  
pp. 46-53
Author(s):  
Maksat Akhmedzhanov ◽  
Rysbek Nurgaziev ◽  
Jailobek Orozov ◽  
Irmgard Moser ◽  
Nikolaus Osterrieder ◽  
...  

Author(s):  
Alok Joshi ◽  
R.P. Gupta ◽  
Selvaraj Pavulraj ◽  
Bidhan Chandra Bera ◽  
Taruna Anand ◽  
...  

Background: Equine herpesvirus type 1 (EHV-1) is the most important viral pathogen of equines, causing respiratory illness, abortion, neonatal foal mortality and neurologic disorders. Large numbers of commercial EHV-1 vaccines are available to protect equines from the disease, but they provide only partial protection. Despite immunization with inactivated and modified live virus vaccine, mares show abortions. Present study was aimed to investigate the immunogenicity and protective efficacy of EHV-1 recombinant glycoprotein B (rgB) and gB expressing plasmid DNA against EHV-1 infection in BALB/c mice model.Methods: About 3-4 weeks old 225 female BALB/c mice were selected for the comparative study of immunization followed by challenged with EHV-1/India/Tohana/96-2 strain virus in 5 different groups of 45 animals each.Result: Following immunization, rgB vaccinated mice showed optimal stimulation of EHV-1 gB specific cell mediated and humoral mediated immunity (HMI and CMI). The gB expressing plasmid DNA vaccinated mice developed only CMI while inactivated whole virus vaccinated mice had only HMI. Upon EHV-1 challenge, all infected mice displayed variable levels of clinical signs with changes in body weight, however, vaccinated mice showed very rapid recovery with optimal protection. Positive control group mice showed severe pulmonary lesions along with persistence virus infection till 5 days post challenge (dpc) whereas vaccinated mice had less pulmonary lesion only up to 3dpc. Minimal lung lesions and early virus clearance was observed in the rgB immunized mice in comparison to the gB plasmid DNA and inactivated EHV-1 vaccine immunized mice. It has been concluded that immunization with rgB elicits optimum protective immune response against EHV-1 infection in mice model. The rgB could be a potential vaccine candidate against EHV-1 infection in equine in the future.


2015 ◽  
Vol 179 (3-4) ◽  
pp. 304-309 ◽  
Author(s):  
Gaby van Galen ◽  
Agnes Leblond ◽  
Pierre Tritz ◽  
Ludovic Martinelle ◽  
Stéphane Pronost ◽  
...  

2010 ◽  
Vol 141 (1-2) ◽  
pp. 12-21 ◽  
Author(s):  
Arthur R. Frampton ◽  
Hiroaki Uchida ◽  
Jens von Einem ◽  
William F. Goins ◽  
Paola Grandi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document