scholarly journals Vaccination Schedule under Conditions of Limited Vaccine Production Rate

Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 116
Author(s):  
Roger Książek ◽  
Radosław Kapłan ◽  
Katarzyna Gdowska ◽  
Piotr Łebkowski

The paper is devoted to optimal vaccination scheduling during a pandemic to minimize the probability of infection. The recent COVID-19 pandemic showed that the international community is not properly prepared to manage a crisis of this scale. Just after the vaccines had been approved by medical agencies, the policymakers needed to decide on the distribution strategy. To successfully fight the pandemic, the key is to find the equilibrium between the vaccine distribution schedule and the available supplies caused by limited production capacity. This is why society needs to be divided into stratified groups whose access to vaccines is prioritized. Herein, we present the problem of distributing protective actions (i.e., vaccines) and formulate two mixed-integer programs to solve it. The problem of distributing protective actions (PDPA) aims at finding an optimal schedule for a given set of social groups with a constant probability of infection. The problem of distributing protective actions with a herd immunity threshold (PDPAHIT) also includes a variable probability of infection, i.e., the situation when herd immunity is obtained. The results of computational experiments are reported and the potential of the models is illustrated with examples.

Author(s):  
Milan Hladík

Traditionally, game theory problems were considered for exact data, and the decisions were based on known payoffs. However, this assumption is rarely true in practice. Uncertainty in measurements and imprecise information must be taken into account. The interval-based approach for handling such uncertainties assumes that one has lower and upper bounds on payoffs. In this paper, interval bimatrix games are studied. Especially, we focus on three kinds of support set invariancy. Support of a mixed strategy consists of that pure strategies having positive probabilities. Given an interval-valued bimatrix game and supports for both players, the question states as follows: Does every bimatrix game instance have an equilibrium with the prescribed support? The other two kinds of invariancies are slight modifications: Has every bimatrix game instance an equilibrium being a subset/superset of the prescribed support? It is computationally difficult to answer these questions: the first case costs solving a large number of linear programs or mixed integer programs. For the remaining two cases a sufficient condition and a necessary condition are proposed, respectively.


Sign in / Sign up

Export Citation Format

Share Document