scholarly journals Use of Stability Modeling to Support Accelerated Vaccine Development and Supply

Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1114
Author(s):  
Cristiana Campa ◽  
Thierry Pronce ◽  
Marilena Paludi ◽  
Jos Weusten ◽  
Laura Conway ◽  
...  

Stability assessment of pharmaceuticals in specific storage and shipment conditions is a key requirement to ensure that safe and efficacious products are administered to patients. This is particularly relevant for vaccines, with numerous vaccines strictly requiring cold storage to remain stable. When stability evaluation is exclusively based on real-time data, it may represent a bottleneck for rapid and effective vaccine access. Stability modeling for vaccines represents a key resource to predict stability based on accelerated stability studies; nevertheless, this approach is not fully exploited for these kinds of products. This is likely because of the complexity and diversity of vaccines, as well as the limited availability of dedicated guidelines or illustrative case studies. This article reports a cross-company perspective on stability modeling for vaccines. Several examples, based on the direct experience of the contributors, demonstrate that modeling approaches can be highly valuable to predict vaccines’ shelf life and behavior during shipment or manipulation. It is demonstrated that modeling methodologies need to be tailored to the nature of the vaccine, the available prior knowledge, and the monitored attributes. Considering that the well-established strategies reported in ICH or WHO guidelines are not always broadly applicable to vaccines, this article represents an important source of information for vaccine researchers and manufacturers, setting the grounds for further discussion within the vaccine industry and with regulators.

Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 518
Author(s):  
Joon-Yong Bae ◽  
Jin Il Kim ◽  
Mee Sook Park ◽  
Gee Eun Lee ◽  
Heedo Park ◽  
...  

Zoonotic transmission of orthohantaviruses from rodent reservoirs to humans has been the cause of severe fatalities. Human infections are reported worldwide, but vaccines have been approved only in China and Korea. Orthohantavirus vaccine development has been pursued with no sense of urgency due to the relative paucity of cases in countries outside China and Korea. However, the orthohantaviruses continuously evolve in hosts and thus the current vaccine may not work as well against some variants. Therefore, a more effective vaccine should be prepared against the orthohantaviruses. In this review, we discuss the issues caused by the orthohantavirus vaccine. Given the pros and cons of the orthohantavirus vaccine, we suggest strategies for the development of better vaccines in terms of pandemic preparedness.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 140
Author(s):  
Abdellatif Bouazzaoui ◽  
Ahmed A. H. Abdellatif ◽  
Faisal A. Al-Allaf ◽  
Neda M. Bogari ◽  
Saied Al-Dehlawi ◽  
...  

The current COVID-19 pandemic, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has raised significant economic, social, and psychological concerns. The rapid spread of the virus, coupled with the absence of vaccines and antiviral treatments for SARS-CoV-2, has galvanized a major global endeavor to develop effective vaccines. Within a matter of just a few months of the initial outbreak, research teams worldwide, adopting a range of different strategies, embarked on a quest to develop effective vaccine that could be effectively used to suppress this virulent pathogen. In this review, we describe conventional approaches to vaccine development, including strategies employing proteins, peptides, and attenuated or inactivated pathogens in combination with adjuvants (including genetic adjuvants). We also present details of the novel strategies that were adopted by different research groups to successfully transfer recombinantly expressed antigens while using viral vectors (adenoviral and retroviral) and non-viral delivery systems, and how recently developed methods have been applied in order to produce vaccines that are based on mRNA, self-amplifying RNA (saRNA), and trans-amplifying RNA (taRNA). Moreover, we discuss the methods that are being used to enhance mRNA stability and protein production, the advantages and disadvantages of different methods, and the challenges that are encountered during the development of effective vaccines.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Nikolaos C. Kyriakidis ◽  
Andrés López-Cortés ◽  
Eduardo Vásconez González ◽  
Alejandra Barreto Grimaldos ◽  
Esteban Ortiz Prado

AbstractThe new SARS-CoV-2 virus is an RNA virus that belongs to the Coronaviridae family and causes COVID-19 disease. The newly sequenced virus appears to originate in China and rapidly spread throughout the world, becoming a pandemic that, until January 5th, 2021, has caused more than 1,866,000 deaths. Hence, laboratories worldwide are developing an effective vaccine against this disease, which will be essential to reduce morbidity and mortality. Currently, there more than 64 vaccine candidates, most of them aiming to induce neutralizing antibodies against the spike protein (S). These antibodies will prevent uptake through the human ACE-2 receptor, thereby limiting viral entrance. Different vaccine platforms are being used for vaccine development, each one presenting several advantages and disadvantages. Thus far, thirteen vaccine candidates are being tested in Phase 3 clinical trials; therefore, it is closer to receiving approval or authorization for large-scale immunizations.


Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 500
Author(s):  
Marco Trabucco Aurilio ◽  
Francesco Saverio Mennini ◽  
Simone Gazzillo ◽  
Laura Massini ◽  
Matteo Bolcato ◽  
...  

Background: While the COVID-19 pandemic has spread globally, health systems are overwhelmed by both direct and indirect mortality from other treatable conditions. COVID-19 vaccination was crucial to preventing and eliminating the disease, so vaccine development for COVID-19 was fast-tracked worldwide. Despite the fact that vaccination is commonly recognized as the most effective approach, according to the World Health Organization (WHO), vaccine hesitancy is a global health issue. Methods: We conducted a cross-sectional online survey of nurses in four different regions in Italy between 20 and 28 December 2020 to obtain data on the acceptance of the upcoming COVID-19 vaccination in order to plan specific interventions to increase the rate of vaccine coverage. Results: A total of 531 out of the 5000 nurses invited completed the online questionnaire. Most of the nurses enrolled in the study (73.4%) were female. Among the nurses, 91.5% intended to accept vaccination, whereas 2.3% were opposed and 6.2% were undecided. Female sex and confidence in vaccine efficacy represent the main predictors of vaccine intention among the study population using a logistic regression model, while other factors including vaccine safety concerns (side effects) were non-significant. Conclusions: Despite the availability of a safe and effective vaccine, intention to be vaccinated was suboptimal among nurses in our sample. We also found a significant number of people undecided as to whether to accept the vaccine. Contrary to expectations, concerns about the safety of the vaccine were not found to affect the acceptance rate; nurses’ perception of vaccine efficacy and female sex were the main influencing factors on attitudes toward vaccination in our sample. Since the success of the COVID-19 immunization plan depends on the uptake rate, these findings are of great interest for public health policies. Interventions aimed at increasing employee awareness of vaccination efficacy should be promoted among nurses in order to increase the number of vaccinated people.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 302 ◽  
Author(s):  
Anthony C. Ike ◽  
Chisom J. Onu ◽  
Chukwuebuka M. Ononugbo ◽  
Eleazar E. Reward ◽  
Sophia O. Muo

Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.


2017 ◽  
Vol 29 (1) ◽  
pp. 94-98 ◽  
Author(s):  
Santosh R. Butle ◽  
Padmanabh B. Deshpande

2021 ◽  
Vol 18 ◽  
Author(s):  
Komal Parmar ◽  
Jay Shah

Purpose: Present investigation was aimed to fabricate nanocrystal of exemestane, an anticancer drug with poor dissolution properties and oral bioavailability. Methods: Influence of various process parameters on the formulation of exemestane nanosuspension using media milling technique were investigated in the trial batches. Box-Behnken design was applied with independent variables identified in the preliminary studies, viz. X1-Milling time, X2-Amount of stabilizer and X3-Amount of milling agent. In vitro dissolution and in vivo studies were carried out. Solid state characterization (PXRD, SEM, and DSC) studies demonstrated physical changes in drug due to nano-crystallization. Accelerated stability studies of optimized formulation were carried out. Results: Individual process attributes exhibited significant effect on the average particle size of exemestane nanosuspension. Dissolution studies revealed enhancement in drug release rate as compared to pure exemestane powder. The in vivo pharmacokinetic parameters of exemestane nanosuspension showed significant improvement in Cmax and AUC0-t, about 283.85% and 271.63% respectively suggesting amelioration in oral bioavailability by 2.7-fold as compared to pure exemestane. Accelerated stability studies of the optimized formulation suggested stability of the nanocrystals for at least sixmonth period. Conclusion: Nanocrystals prepared by media milling technique were successful in improving the poor dissolution properties and oral bioavailability of exemestane.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2443 ◽  
Author(s):  
Zi Li ◽  
Wenqi He ◽  
Yungang Lan ◽  
Kui Zhao ◽  
Xiaoling Lv ◽  
...  

An acute outbreak of porcine hemagglutinating encephalomyelitis virus (PHEV) infection in piglets, characterized with neurological symptoms, vomiting, diarrhea, and wasting, occurred in China. Coronavirus-like particles were observed in the homogenized tissue suspensions of the brain of dead piglets by electron microscopy, and a wild PHEV strain was isolated, characterized, and designated as PHEV-CC14. Histopathologic examinations of the dead piglets showed characteristics of non-suppurative encephalitis, and some neurons in the cerebral cortex were degenerated and necrotic, and neuronophagia. Similarly, mice inoculated with PHEV-CC14 were found to have central nervous system (CNS) dysfunction, with symptoms of depression, arched waists, standing and vellicating front claws. Furthmore, PHEV-positive labeling of neurons in cortices of dead piglets and infected mice supported the viral infections of the nervous system. Then, the major structural genes of PHEV-CC14 were sequenced and phylogenetically analyzed, and the strain shared 95%–99.2% nt identity with the other PHEV strains available in GenBank. Phylogenetic analysis clearly proved that the wild strain clustered into a subclass with a HEV-JT06 strain. These findings suggested that the virus had a strong tropism for CNS, in this way, inducing nonsuppurative encephalitis as the cause of death in piglets. Simultaneously, the predicted risk of widespread transmission showed a certain variation among the PHEV strains currently circulating around the world. Above all, the information presented in this study can not only provide good reference for the experimental diagnosis of PHEV infection for pig breeding, but also promote its new effective vaccine development.


2016 ◽  
Vol 18 (4) ◽  
pp. 1158-1176 ◽  
Author(s):  
Don Clancy ◽  
Neil Hodnett ◽  
Rachel Orr ◽  
Martin Owen ◽  
John Peterson

Sign in / Sign up

Export Citation Format

Share Document