scholarly journals Study on an Energy-Harvesting Magnetorheological Damper System in Parallel Configuration for Lightweight Battery-Operated Automobiles

Vibration ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 162-173
Author(s):  
Urvesh Kabariya ◽  
Sagil James

Suspension dampers are extremely critical for modern automobiles for absorbing vibrational energy while in operation. For years now, the viscous passive damper has been dominant. However, there is a constant need to improve and revolutionize the damping technology to adapt to modern road conditions and for better performance. Controlled shock absorbers capable of adapting to uneven road profiles are required to meet this challenge and enhance the passenger comfort level. Among the many types of modern damping solutions, magnetorheological (MR) dampers have gained prominence, considering their damping force control capability, fast adjustable response, and low energy consumption. Advancements in energy-harvesting technologies allow for the regeneration of a portion of energy dissipated in automotive dampers. While the amount of regenerated energy is often insufficient for regular automobiles, it could prove to be vital to support lightweight battery-operated vehicles. In battery-operated vehicles, this regenerated energy can be used for powering several secondary systems, including lighting, heating, air conditioning, and so on. This research focuses on developing a hybrid smart suspension system that combines the MR damping technology along with an electromagnetic induction (EMI)-based energy-harvesting system for applications in lightweight battery-operated vehicles. The research involves the extensive designing, numerical simulation, fabrication, and testing of the proposed smart suspension system. The development of the proposed damping system would help advance the harvesting of clean energy and enhance the performance and affordability of future battery-operated vehicles.

Author(s):  
Min-Chie Chiu ◽  
Mansour Karkoub ◽  
Ming-Guo Her

The need for renewable energy sources and harvesting devices has increased over the years for environmental and economic reasons. Cars for example have gone through an important transformation in the past decade which led to the inception of the hybrid type. The idea is to harness some of the dissipated energy and reuse it to operate the car. A lot of energy is dissipated from the suspension system; therefore, harnessing that energy could be very useful in powering up electrical systems in the car. A magnetic mass-spring system to harvest the vibrational energy dissipated from the car’s suspension system and three dimensionless comfort levels for the passenger are presented. To maximize the regenerated electricity indicator and minimize the discomfort indices, a multi-objective function based on the above indices in conjunction with the Simulated Annealing method is used. The theoretical developments are demonstrated under constant and varied driving speeds and the simulation results show the energy harvester is capable of producing reasonable amounts of electricity while maintaining a good comfort level. Results reveal that the harvester can generate 0.045 Volts when the car travels at 60 km/h with an acceleration of 0.43 m/s2 and assumed base excitation amplitude of 0.05 m.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Zhifei Wu ◽  
Guangzhao Xu

This paper proposes a hydraulic energy-harvesting shock absorber prototype, which realizes energy harvesting of the vibration energy dissipated by the automobile suspension system. The structural design of the proposed shock absorber ensures that the unidirectional flow of oil drives the hydraulic motor to generate electricity while obtaining an asymmetrical extension/compression damping force. A mathematical model of the energy-harvesting shock absorber is established, and the simulation results indicate that the damping force can be controlled by varying the load resistance of the feed module, thus adjusting the required damping force ratio of the compression and recovery strokes. By adjusting the external load, the target indicator performance of the shock absorber is achieved while obtaining the required energy recovery power. A series of experiments are conducted on the prototype to verify the validity of the damping characteristics and the energy recovery efficiency as well as to analyze the effect of external load and excitation speed on these characteristics.


2021 ◽  
Author(s):  
Abhishek Bhardwaj ◽  
SHIVAM SHANDILYA ◽  
Vijeet Singh

As observed in day-to-day life, driving on a bumpy road generates vibrational energy in an automobile which is then dissipated by the shock absorbers. But lately, as we progress into the energy-depleting, energy concern awake era, energy efficiency has been a serious concern within the automobile manufacturing industry since the production within the 1900s, researchers realized that the energy dissipated in traditional hydraulic shock absorbers is merit being recovered only within the middle of 1990s. Unlike traditional suspension systems which suppress the vibrations by dissipating the vibration energy into waste heat, the regenerative suspension with energy harvesting shock absorbers can convert the traditionally wasted energy into electricity. Several different techniques followed for the energy harvesting are listed and Two main devices namely rotary and linear electromagnetic generators are analyzed for comfort and handling, body acceleration with and without a generator, and also attempts is made to enunciate the importance of energy conservation techniques in an automobile.


2017 ◽  
Vol 36 (2) ◽  
pp. 177-192 ◽  
Author(s):  
Raju Ahamed ◽  
MM Rashid ◽  
MM Ferdaus ◽  
Hazlina B Yusuf

In this study, an magnetorheological (MR) damper has been designed based on its energy harvesting capability which combines the key benefits of energy generation (reusing lost energy) and magnetorheological damping (controllable damping force). The energy harvesting part has a magnet and coil arrangement to generate energy. A two-dimensional axisymmetric model of the proposed magnetorheological damper is developed in COMSOL Multiphysics where different magnetic field properties are analysed generally by finite element method. Finally, the energy harvesting capability of the proposed magnetorheological damper model is tested by a universal testing machine and observed through an oscilloscope. The maximum induced output voltage was around 0.7 V.


Author(s):  
Alexandru Dobre

In the context of improving the comfort and dynamics of the vehicle, the suspension system has been continuously developed and improved, especially using magnetorheological (MR) shock absorbers. The development of this technology which is relatively new has not been easy. Thus, the first widespread commercial use of MR fluid in a semi-active suspension system was implemented in passenger cars. The magnetorheological shock absorber can combine the comfort with the dynamic driving, because it allows the damping characteristic to be adapted to the road profile. The main objective of the paper is to analyze the dynamic behavior of the magnetorheological shock absorber in the semi-active suspension. In this sense, the author carried out a set of experimental measurements with a damping test bench, specially built and equipped with modern equipment. The results obtained from the experimental determinations show a significantly improved comfort when using a magnetorheological shock absorber, compared to a classic one, by the fact that the magnetorheological shock absorber allows to modify the damping coefficient according to the road conditions, thus maintaining the permanent contact between the tire and the road due to increased damping force.


2020 ◽  
Vol 10 (12) ◽  
pp. 4099
Author(s):  
Quoc-Duy Bui ◽  
Quoc Hung Nguyen ◽  
Tan Tien Nguyen ◽  
Duc-Dai Mai

Magnetorheological (MR) dampers have been widely investigated and proposed for vibration mitigation systems because they possess continuous variability of damping coefficient in response to different operating conditions. In the conventional design of MR dampers, a separate controller and power supply are required, causing an increment of complexity and cost, which are not suitable for home appliances like washing machines. To solve these issues and to reuse wasted energy from vibration of washing machines, in this study, a self-powered shear-mode MR damper, which integrates MR damping and energy-harvesting technologies into a single device, is proposed. The MR damper is composed of an inner housing, on which magnetic coils are wound directly, and an outer housing for covering and creating a closed magnetic circuit of the damper. The gap between the inner housing and the moving shaft is filled with MR fluid to produce the damping force. The energy-harvesting part consists of permanent magnets fastened together on the shaft and induction coils wound directly on slots of the housing. The induced power from the induction coils is directly applied to the excitation coils of the damping part to generate a corresponding damping force against the vibration. In order to achieve optimal geometry of the self-powered MR damper, an optimization for both the damping part and the energy harvesting part of the proposed dampers are conducted based on ANSYS finite element analysis. From optimal solutions, a prototype of the proposed damper is designed in detail, manufactured, and experimentally validated.


Author(s):  
Jia Mi ◽  
Lin Xu ◽  
Sijing Guo ◽  
Lingshuai Meng ◽  
Mohamed A. A. Abdelkareem

With the development of high-speed rail technology, the interaction between wheel and track becomes more serious, which threatens the running stability, riding quality and safety of the vehicle. Due to the selected stiffness and damping parameters, conventional passive suspensions cannot fit in with the diverse conditions of the railway. Additionally, among these vibrations contains a large amount of energy, if this vibrational energy can be recycled and used for the active suspension to control, it will be a good solution compared to the conventional passive suspensions. Many energy-harvesting shock absorbers have been proposed in recent years, the most popular design is the electromagnetic harvester including linear electromagnetic shock absorbers, rotational electromagnetic shock absorbers, the mechanical motion rectifier (MMR), and the hydraulic electromagnetic energy-regenerative shock absorber (HESA). With different energy converting mechanisms, the complicated effects of the inertia and nonlinear damping behaviors will severely impact the vehicle dynamic performance such as the ride comfort and road handling. In the past few years, engineers and researchers have done relevant researches on HESA which have shown that it has good effects and proposed several suspension energy regeneration solutions for applying to car. This paper presents a novel application of HESA into a bogie system for railway vehicles comparing to the conventional suspension systems. HESA is composed of hydraulic cylinder, check valves, accumulators, hydraulic motor, generator, pipelines and so on. In HESA, the high-pressure oil which is produced by shock absorber reciprocation could be exported to drive the hydraulic motor, so as to drive the generator to generate electricity. In this way, HESA regenerate the mechanical vibrational energy that is otherwise dissipated by the traditional shock absorber as heat energy. Because the bogie has two sets of suspension systems, a dynamic model of bogie based on AMESim is established in order to clarify the influence of the dynamic characteristics effect and the energy harvesting efficiency when installing the HESA into different sets of the bogie. Then, set the HESA model into each suspension system of the bogie and input with the corresponding characteristic excitation, the influence of the dynamic characteristics and the energy harvesting efficiency are analyzed and compared. The simulation results show that the system can effectively reduce the vibration of the carriage, while maintaining good potential to recycle vibratory energy. Based on the results of the simulation, the relationships as well as differences between the first suspension system and second suspension system have been concluded, which are useful for the design of HESA-Bogie. Moreover, comparing the energy harvesting efficiency discrepancy between the two suspension systems, the potential of energy harvesting of a novel railway vehicle bogie system with HESA has been evaluated and then the best application department has been found, which indicates the theoretical feasibilities of the HESA-bogie to improve the fuel economy.


2018 ◽  
Vol 8 (4) ◽  
pp. 3218-3222
Author(s):  
R. N. Yerrawar ◽  
R. R. Arakerimath

Magnetorheological (MR) strut is among the leading advanced applications of semi-active suspension systems. The damping force of MR damper is controlled by varying the viscosity of MR fluid. In this work, the viscosity of MR damper varies by changing the current from 0.5A to 0.7A. The design of experiments is taken into account in concert with the product/process development as one completely advanced tool. The parameters used for ride comfort optimization are sprung mass, spring stiffness, tire pressure, current, and cylinder material with two levels of each. Taguchi orthogonal array method is used to select the best results by parameter optimization with a minimum number of test runs. In this paper, from Taguchi L16 array and S/N ratio analysis, it is observed that the cylinder material with Al and CS for damper cylinder is a key parameter for performance measure of semi-active suspension system. From regression analysis, a linear mathematical model is developed for Al and CS as cylinder materials. The interaction of cylinder materials with all four parameters is plotted. The methodology implemented for measurement of acceleration as a ride comfort is as per IS 2631-1997. The more economical model of magnetorheological damper will motivate Indian auto industry to broader applications.


2018 ◽  
Vol 877 ◽  
pp. 403-408 ◽  
Author(s):  
Nileshkumar D. Chauhan ◽  
Dipal Patel

To control the vibrations with passive suspension system having limitation with constant damping force. By using smart material like magnetorheological fluid, it is possible to control the damping performance of suspension system using current variations in magnetic coil. Applications of this kind of damper are in front loaded washing machine and damper use in driver seat of heavy duty vehicles. Mainly flow mode MR damper is most commonly used damper for these two applications. This paper represents theoretical model and optimized design of flow mode MR damper. For any kind of MR damper design of magnetic coil is play very vital role. So for this paper mainly includes the design of coil and different parameters like number of coil distance between two coil current passing from the coil is consider for design and optimization using FEMM software. This work also includes the theoretical study of MR damper characteristics with force-displacement and force velocity plot with change in piston diameter and fluid gap.


2021 ◽  
Author(s):  
Abhishek Bhardwaj ◽  
SHIVAM SHANDILYA ◽  
Vijeet Singh

As observed in day-to-day life, driving on a bumpy road generates vibrational energy in an automobile which is then dissipated by the shock absorbers. But lately, as we progress into the energy-depleting, energy concern awake era, energy efficiency has been a serious concern within the automobile manufacturing industry since the production within the 1900s, researchers realized that the energy dissipated in traditional hydraulic shock absorbers is merit being recovered only within the middle of 1990s. Unlike traditional suspension systems which suppress the vibrations by dissipating the vibration energy into waste heat, the regenerative suspension with energy harvesting shock absorbers can convert the traditionally wasted energy into electricity. Several different techniques followed for the energy harvesting are listed and Two main devices namely rotary and linear electromagnetic generators are analyzed for comfort and handling, body acceleration with and without a generator, and also attempts is made to enunciate the importance of energy conservation techniques in an automobile.


Sign in / Sign up

Export Citation Format

Share Document