scholarly journals Long-Term Changes in the Zooplankton Community of Lake Maggiore in Response to Multiple Stressors: A Functional Principal Components Analysis

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 962 ◽  
Author(s):  
Andrea Arfè ◽  
Piero Quatto ◽  
Antonella Zambon ◽  
Hugh J. MacIsaac ◽  
Marina Manca

We describe the long-term (1981–2008) dynamics of several physico-chemical and biological variables and how their changes may have influenced zooplankton structure in Lake Maggiore (Italy). Data was available for the 1981–1992 and 1995–2008 periods. Standardized time-series for temperature and total phosphorus (TP), chlorophyll-a, phytoplankton density (cel m−3), and cell size (µm3), as well as zooplankton structure (Copepoda, Cladocera, and Rotifera density, ind m−3) were smoothed using penalized B-splines and analyzed using Functional Principal Components (FPCs) to assess their dominant modes of variation. The first four FPCs explained 55% of 1981–1992 and 65% of 1995–2008 overall variation. Results showed that temperature fluctuated during the study period, particularly during 1988–1992 with a general tendency to increase. TP showed a declining trend with some reversions in the pattern observed in the years 1992, 1999, and 2000. Phytoplankton estimators and chlorophyll-a concentration showed a variable trend along the study period. Zooplankton groups also had a variable trend along the study period with a general increase in density of large carnivorous (mainly Bythotrephes longimanus) and a decrease of large herbivorous (mainly Daphnia), and a similar increase in the ratio of raptorial to microphagous rotifers. Our results suggest that the lake experienced a strong trophic change associated with oligotrophication, followed by pronounced climate-induced changes during the latter period. TP concentration was strongly associated with changes in abundance of some zooplankton taxa.

2007 ◽  
Vol 16 (3) ◽  
pp. 349 ◽  
Author(s):  
Belén Luna ◽  
José M. Moreno ◽  
Alberto Cruz ◽  
Federico Fernández-González

This work documents the effect of a common, long-term fire retardant chemical, Fire-Trol 934, on seed viability and germination of 36 plant species growing in a burned Mediterranean area, covering different life-form types, regenerative strategies and distribution ranges. Seeds were subjected to four treatments: control, and application of Fire-Trol 934 at concentrations of 0.02, 0.2 and 2%. Fire-Trol 934 significantly decreased both seed viability and germination in the group of species studied, which suggests that Fire-Trol 934 may be toxic for seeds, at least when applied at high concentrations. Whereas seed viability generally showed a progressive decrease with increased Fire-Trol 934 concentration, germination percentages generally increased when intermediate Fire-Trol 934 concentrations were used, but tended to be drastically reduced when seeds were exposed to the highest (2%) concentration. The reduction observed in germination at the highest Fire-Trol 934 concentration was greater than that observed in viability, which suggests that the effect of Fire-Trol 934 on seeds may not be lasting. Little differences in the response to Fire-Trol 934 emerged among plant groups, all of which followed the general tendency described above.


2011 ◽  
Vol 47 (2) ◽  
pp. 267-291 ◽  
Author(s):  
K. P. C. RAO ◽  
W. G. NDEGWA ◽  
K. KIZITO ◽  
A. OYOO

SUMMARYThis study examines farmers’ perceptions of short- and long-term variability in climate, their ability to discern trends in climate and how the perceived trends converge with actual weather observations in five districts of Eastern Province in Kenya where the climate is semi-arid with high intra- and inter-annual variability in rainfall. Field surveys to elicit farmers’ perceptions about climate variability and change were conducted in Machakos, Makueni, Kitui, Mwingi and Mutomo districts. Long-term rainfall records from five meteorological stations within a 10 km radius from the survey locations were obtained from the Kenya Meteorological Department and were analysed to compare with farmers’ observations. Farmers’ responses indicate that they are well aware of the general climate in their location, its variability, the probabilistic nature of the variability and the impacts of this variability on crop production. However, their ability to synthesize the knowledge they have gained from their observations and discern long-term trends in the probabilistic distribution of seasonal conditions is more subjective, mainly due to the compounding interactions between climate and other factors such as soil fertility, soil water and land use change that determine the climate's overall influence on crop productivity. There is a general tendency among the farmers to give greater weight to negative impacts leading to higher risk perception. In relation to long-term changes in the climate, farmer observations in our study that rainfall patterns are changing corroborated well with reported perceptions from other places across the African continent but were not supported by the observed trends in rainfall data from the five study locations. The main implication of our findings is the need to be aware of and account for the risk during the development and promotion of technologies involving significant investments by smallholder farmers and exercise caution in interpreting farmers’ perceptions about long-term climate variability and change.


Author(s):  
Hae-Jin Lee ◽  
Hae-Kyung Park ◽  
Se-Uk Cheon

Flow regulation is one of the most common anthropogenic factors affecting rivers worldwide. In Korea, 16 weirs were constructed along four major rivers from 2009 to 2012. This study aimed to elucidate initial changes in physical, chemical, and biological variables after the construction of consecutive weirs on the Nakdong River, a major large river system. Water quality variables and phytoplankton cell densities were investigated at eight representative sites and compared with the data recorded before the weir construction. There were spatial and temporal changes in the hydraulic retention time (HRT), total phosphorus (TP), and chlorophyll a concentrations among the eight weir sections. HRT increased after the weir construction, while TP and chlorophyll a tended to decrease from the middle to lower section of the Nakdong River. Furthermore, differences were observed in the phytoplankton community composition between 2006–2007 and 2013. There was a marginal decrease in the duration of centric diatom (Stephanodiscus hantzschii) blooms after weir construction. However, Microcystis aeruginosa proliferated more extensively during summer and autumn than it did before the weir construction. Our results suggest that changes in hydrological factors, in response to consecutive weir construction, may contribute to greater physical, chemical, and ecological variability.


2021 ◽  
Vol 4 ◽  
Author(s):  
Isabelle Domaizon

The emergence of molecular analyses based on the sequencing of sedimentary DNA has opened up many new areas of inquiry in paleolimnology. DNA preserved in sediments (SedDNA) offers the possibility to consider taxa that were traditionally not accessible because they do not leave distinct morphological fossils. Recent applications that considered a diversity of biological groups (including bacteria, protists, zooplankton, fish) illustrate how efficiently SedDNA-based methods complement both classical paleolimnology proxies and limnological data. The knowledge gained from this approach is very diverse in scope, ranging from quantifying natural variability in population and community dynamics to understanding how these biological variables respond to anthropogenic disturbances and climatic change. The use of lake sedimentary DNA to track long-term changes in aquatic biota is a rapidly advancing field of research. Based on recent applications, this presentation illustrates (i) the potential and challenges associated with the study of SedDNA to address critical research questions in lacustrine ecology (ii) the main methodological precautions to be taken into account for implementing these types of DNA analyses (i.e. best practices) and (iii) the emerging topics that could be addressed using sedimentary DNA, in particular to reconstruct the temporal dynamics of lacustrine biodiversity.


2001 ◽  
Vol 37 ◽  
pp. S67-S68
Author(s):  
G. Cartei ◽  
L. Franceschi ◽  
M. Furlanut ◽  
A. Bertolissi ◽  
P.G. Sala ◽  
...  

2003 ◽  
pp. 97-132
Author(s):  
E.S. Millard ◽  
O.E Johannsson ◽  
M.A. Neilson ◽  
A.H. El-Shaarawi

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2192
Author(s):  
Xujie Yang ◽  
Yan Jiang ◽  
Xuwei Deng ◽  
Ying Zheng ◽  
Zhiying Yue

Chlorophyll a (Chl-a) concentration, which reflects the biomass and primary productivity of phytoplankton in water, is an important water quality parameter to assess the eutrophication status of water. The band combinations shown in the images of Donghu Lake (Wuhan City, China) captured by Landsat satellites from 1987 to 2018 were analyzed. The (B4 − B3)/(B4 + B3) [(Green − Red)/(Green + Red)] band combination was employed to construct linear, power, exponential, logarithmic and cubic polynomial models based on Chl-a values in Donghu Lake in April 2016. The correlation coefficient (R2), the relative error (RE) and the root mean square error (RMSE) of the cubic model were 0.859, 9.175% and 11.194 μg/L, respectively and those of the validation model were 0.831, 6.509% and 19.846μg/L, respectively. Remote sensing images from 1987 to 2018 were applied to the model and the spatial distribution of Chl-a concentrations in spring and autumn of these years was obtained. At the same time, the eutrophication status of Donghu Lake was monitored and evaluated based on the comprehensive trophic level index (TLI). The results showed that the TLI (∑) of Donghu Lake in April 2016 was 63.49 and the historical data on Chl-a concentration showed that Donghu Lake had been eutrophic. The distribution of Chl-a concentration in Donghu Lake was affected by factors such as construction of bridges and dams, commercial activities and enclosure culture in the lake. The overall distribution of Chl-a concentration in each sub-lake was higher than that in the main lake region and Chl-a concentration was highest in summer, followed by spring, autumn and winter. Based on the data of three long-term (2005–2018) monitoring points in Donghu Lake, the matching patterns between meteorological data and Chl-a concentration were analyzed. It revealed that the Chl-a concentration was relatively high in warmer years or rainy years. The long-term measured data also verified the accuracy of the cubic model for Chl-a concentration. The R2, RE and RMSE of the validation model were 0.641, 2.518% and 22.606 μg/L, respectively, which indicated that it was feasible to use Landsat images to retrieve long-term Chl-a concentrations. Based on longitudinal remote sensing data from 1987 to 2018, long-term and large-scale dynamic monitoring of Chl-a concentrations in Donghu Lake was carried out in this study, providing reference and guidance for lake water quality management in the future.


Sign in / Sign up

Export Citation Format

Share Document