Modeling and Solution Techniques Used for Hydro Generation Scheduling

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1392 ◽  
Author(s):  
Iram Parvez ◽  
JianJian Shen ◽  
Mehran Khan ◽  
Chuntian Cheng

The hydro generation scheduling problem has a unit commitment sub-problem which deals with start-up/shut-down costs related hydropower units. Hydro power is the only renewable energy source for many countries, so there is a need to find better methods which give optimal hydro scheduling. In this paper, the different optimization techniques like lagrange relaxation, augmented lagrange relaxation, mixed integer programming methods, heuristic methods like genetic algorithm, fuzzy logics, nonlinear approach, stochastic programming and dynamic programming techniques are discussed. The lagrange relaxation approach deals with constraints of pumped storage hydro plants and gives efficient results. Dynamic programming handles simple constraints and it is easily adaptable but its major drawback is curse of dimensionality. However, the mixed integer nonlinear programming, mixed integer linear programming, sequential lagrange and non-linear approach deals with network constraints and head sensitive cascaded hydropower plants. The stochastic programming, fuzzy logics and simulated annealing is helpful in satisfying the ramping rate, spinning reserve and power balance constraints. Genetic algorithm has the ability to obtain the results in a short interval. Fuzzy logic never needs a mathematical formulation but it is very complex. Future work is also suggested.

2013 ◽  
Vol 2 (3) ◽  
pp. 86-101 ◽  
Author(s):  
Provas Kumar Roy ◽  
Dharmadas Mandal

The aim of this paper is to evaluate a hybrid biogeography-based optimization approach based on the hybridization of biogeography-based optimization with differential evolution to solve the optimal power flow problem. The proposed method combines the exploration of differential evolution with the exploitation of biogeography-based optimization effectively to generate the promising candidate solutions. Simulation experiments are carried on standard 26-bus and IEEE 30-bus systems to illustrate the efficacy of the proposed approach. Results demonstrated that the proposed approach converged to promising solutions in terms of quality and convergence rate when compared with the original biogeography-based optimization and other population based optimization techniques like simple genetic algorithm, mixed integer genetic algorithm, particle swarm optimization and craziness based particle swarm optimization.


2020 ◽  
Vol 7 (5) ◽  
pp. 668-683
Author(s):  
Ashutosh Bhadoria ◽  
Sanjay Marwaha

Abstract This paper proposes a new approach based on the moth flame optimizer algorithm. Moth flame optimizer simulates the natural fervent navigation technique adopted by moths looking for a source of light. The proposed method is further improved by priority list-based ordering; the unit commitment problem (UCP) is a non-linear, non-convex, and combinatorial complex optimization problem. It contains both continuous and discrete variables. This further increases its complexity. Moth flame optimizer is very good at obtaining a commitment pattern: allocation of power on the committed units obtained by mixed-integer quadratic programming method. Heuristic search strategies are used to adopt for the repair of minimum up and downtime, and spinning reserve constraints. MFO effectiveness is tested on the standard UCP reference IEEE model buses 14 and 30, and 10 and 20 units. The efficiency of the projected algorithms is compared to classical PSO, PSOLR, HPSO, PSOSQP, hybrid MPSO, IBPSO, LCA-PSO, NPSO, PSO-GWO, and various other evolutionary algorithms. The comparison result shows that MFO can lead to all methods reported earlier in literature.


2018 ◽  
Vol 8 (9) ◽  
pp. 1684 ◽  
Author(s):  
Jaehee Lee ◽  
Jinyeong Lee ◽  
Young-Min Wi ◽  
Sung-Kwan Joo

Occasionally, wind curtailments may be required to avoid an oversupply when wind power, together with the minimum conventional generation, exceed load. By curtailing wind power, the forecast uncertainty and short-term variations in wind power can be mitigated so that a lower spinning reserve is sufficient to maintain the operational security of a power system. Additionally, the electric vehicle (EV) charging load can relieve the oversupply of wind power generation and avoid uneconomical wind power curtailments. This paper presents a stochastic generation scheduling method to ensure the operation security against wind power variation as well as against forecast uncertainty considering the stochastic EV charging load. In the paper, the short-term variations of wind power that are mitigated by the wind curtailment are investigated, and incorporated into a generation scheduling problem as the mixed-integer program (MIP) forms. Numerical results are also presented in order to demonstrate the effectiveness of the proposed method.


Author(s):  
Maria Fleischer Fauske

The troops-to-tasks analysis in military operational planning is the process where the military staff investigates who should do what, where, and when in the operation. In this paper, we describe a genetic algorithm for solving troops-to-tasks problems, which are typically solved manually. The study was motivated by a request from Norwegian military staff, who acknowledged the potential for solving the troops-to-tasks analysis more effectively by using optimization techniques. Also, NATO’s operational planning tool, TOPFAS, lacks an optimization module for the troops-to-tasks analysis. The troops-to-tasks problem generalizes the well-known resource-constrained project scheduling problem, and thus it is very difficult to solve. As the troops-to-tasks problem is particularly complex, the main purpose of our study was to develop an algorithm capable of solving real-sized problem instances. We developed a genetic algorithm with new features, which were crucial to finding good solutions. We tested the algorithm on two different data sets representing high-intensity military operations. We compared the performance of the algorithm to that of a mixed integer linear program solved by CPLEX. In contrast to CPLEX, the algorithm found feasible solutions within an acceptable time frame for all instances.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1452
Author(s):  
Cristian Mateo Castiblanco-Pérez ◽  
David Esteban Toro-Rodríguez ◽  
Oscar Danilo Montoya ◽  
Diego Armando Giral-Ramírez

In this paper, we propose a new discrete-continuous codification of the Chu–Beasley genetic algorithm to address the optimal placement and sizing problem of the distribution static compensators (D-STATCOM) in electrical distribution grids. The discrete part of the codification determines the nodes where D-STATCOM will be installed. The continuous part of the codification regulates their sizes. The objective function considered in this study is the minimization of the annual operative costs regarding energy losses and installation investments in D-STATCOM. This objective function is subject to the classical power balance constraints and devices’ capabilities. The proposed discrete-continuous version of the genetic algorithm solves the mixed-integer non-linear programming model that the classical power balance generates. Numerical validations in the 33 test feeder with radial and meshed configurations show that the proposed approach effectively minimizes the annual operating costs of the grid. In addition, the GAMS software compares the results of the proposed optimization method, which allows demonstrating its efficiency and robustness.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1581
Author(s):  
Alfonso Hernández ◽  
Aitor Muñoyerro ◽  
Mónica Urízar ◽  
Enrique Amezua

In this paper, an optimization procedure for path generation synthesis of the slider-crank mechanism will be presented. The proposed approach is based on a hybrid strategy, mixing local and global optimization techniques. Regarding the local optimization scheme, based on the null gradient condition, a novel methodology to solve the resulting non-linear equations is developed. The solving procedure consists of decoupling two subsystems of equations which can be solved separately and following an iterative process. In relation to the global technique, a multi-start method based on a genetic algorithm is implemented. The fitness function incorporated in the genetic algorithm will take as arguments the set of dimensional parameters of the slider-crank mechanism. Several illustrative examples will prove the validity of the proposed optimization methodology, in some cases achieving an even better result compared to mechanisms with a higher number of dimensional parameters, such as the four-bar mechanism or the Watt’s mechanism.


Author(s):  
Uttamarani Pati ◽  
Papia Ray ◽  
Arvind R. Singh

Abstract Very short term load forecasting (VSTLF) plays a pivotal role in helping the utility workers make proper decisions regarding generation scheduling, size of spinning reserve, and maintaining equilibrium between the power generated by the utility to fulfil the load demand. However, the development of an effective VSTLF model is challenging in gathering noisy real-time data and complicates features found in load demand variations from time to time. A hybrid approach for VSTLF using an incomplete fuzzy decision system (IFDS) combined with a genetic algorithm (GA) based feature selection technique for load forecasting in an hour ahead format is proposed in this research work. This proposed work aims to determine the load features and eliminate redundant features to form a less complex forecasting model. The proposed method considers the time of the day, temperature, humidity, and dew point as inputs and generates output as forecasted load. The input data and historical load data are collected from the Northern Regional Load Dispatch Centre (NRLDC) New Delhi for December 2009, January 2010 and February 2010. For validation of proposed method efficacy, it’s performance is further compared with other conventional AI techniques like ANN and ANFIS, which are integrated with genetic algorithm-based feature selection technique to boost their performance. These techniques’ accuracy is tested through their mean absolute percentage error (MAPE) and normalized root mean square error (nRMSE) value. Compared to other conventional AI techniques and other methods provided through previous studies, the proposed method is found to have acceptable accuracy for 1 h ahead of electrical load forecasting.


Author(s):  
H Sayyaadi ◽  
H R Aminian

A regenerative gas turbine cycle with two particular tubular recuperative heat exchangers in parallel is considered for multi-objective optimization. It is assumed that tubular recuperative heat exchangers and its corresponding gas cycle are in design stage simultaneously. Three objective functions including the purchased equipment cost of recuperators, the unit cost rate of the generated power, and the exergetic efficiency of the gas cycle are considered simultaneously. Geometric specifications of the recuperator including tube length, tube outside/inside diameters, tube pitch, inside shell diameter, outer and inner tube limits of the tube bundle and the total number of disc and doughnut baffles, and main operating parameters of the gas cycle including the compressor pressure ratio, exhaust temperature of the combustion chamber and the air mass flowrate are considered as decision variables. Combination of these objectives anddecision variables with suitable engineering and physical constraints (including NO x and CO emission limitations) comprises a set of mixed integer non-linear problems. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms, namely non-dominated sorting genetic algorithm. This approach is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained, and a final optimal solution is selected in a decision-making process.


Sign in / Sign up

Export Citation Format

Share Document