scholarly journals Hydrochemical Assessment of the Irrigation Water Quality of the El-Salam Canal, Egypt

Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2428
Author(s):  
Yasser A. El-Amier ◽  
Wafaa K. Kotb ◽  
Giuliano Bonanomi ◽  
Hala Fakhry ◽  
Najat A. Marraiki ◽  
...  

The El-Salam canal in Egypt is considered an important stream of fresh water for the agricultural sector that extends from the Nile River to Sinai, while it is subjected to several anthropogenic stresses. In this study, five-georeferenced stations (named from S1 to S5) were monitored along the El-Salam Canal before El-Sahara of the Suez Canal, via the estimation of the WQ index based on major cations and anions analysis including salinity hazard, permeability index, residual sodium carbonate, magnesium hazard, sodium percentage, sodium adsorption ratio, Kelley index, potential salinity, total hardness, and irrigation water quality index (IWQI). The sequence of average concentration of cations in water were Na+ > Ca2+ > Mg2+ > K+. The major cations constitute around 60% of the total dissolved salts. While the sequence of major anions in water were SO42− > HCO3− > Cl− > CO32−. These cations and anions showed an increasing trend from S1 (intake of the canal) to S5 (before El-Sahara) of the El-Salam Canal. Moreover, the order of heavy metals was Zn < Cd < Cr < Ni < Fe < Mn < Co < Cu < Pb. According to the US EPA (1999) guidelines, the levels of Fe and Zn in the El-Salam Canal are within the permissible limits for drinking and irrigation purposes, while Mn, Pb, Cu, Co, Ni, Cr, and Cd were detected at higher concentrations than those recommended. The value of IWQI in water samples varied from 40.26 to 114.82. The samples of S1 showed good water, the samples of region S2 (after mixing with Faraskour drainage) showed poor water quality, samples of regions S3 (after mixing with the El-Serw drain waters) and S5 (before El-Sahara) fell under the very poor water category and samples of region S4 (after mixing with the Hadous drainage) showed unsuitable water. Croplands irrigated with such water will not be exposed to any alkaline risks but will be exposed to the risk of salinity, which is more severe after mixing at the S3 and S4 sites. It is recommended to treat the drainage water before mixing with the irrigation water of El-Salam Canal to raise the suitability of irrigation water for crops, particularly for the Hadous drain.

2017 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Kailash Aher ◽  
Sharad Gaikwad

To identify the sources and quality of groundwater, the water samples were collected from 52 dug wells irrigation water in an area of 1089.82km2 and were analyses for pH, Conductivity, total dissolved solids, Calcium, Magnesium, Sodium, potassium, total hardness, Alkalinity (CO32−, HCO3−), sulphate, chloride, nitrate and fluoride to understand the (irrigation water quality index ) IWQI, The         secondary parameters of irrigation groundwater quality indices such as Sodium adsorption ratio (SAR), Residual sodium carbonate (RSC), Kelley’s ratio (KR), Sodium soluble percent (SSP), Permeability index (PI),Magnesium adsorption ratio (MAR),and CRI       (Corrosively ratio index) were calculated from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (88%+12%) indicate that slightly unsustainable to good quality of ground water. But due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.


2021 ◽  
Author(s):  
Md Shajedul Islam ◽  
Md. Golam Mostafa

Abstract Groundwater is a vital source of irrigation water, and it provides over 80% of the irrigated water supply in Bangladesh. The study aimed to assess the status of irrigation water of the Ganges river basin areas in the middle-west part of Bangladesh through the hydrogeochemical characterization and classification of groundwater. The study parameters were pH, EC, TDS, Ca2+, Mg2+, total hardness, Na+, K+, B, Cl−, HCO3 −, SO 42−, NO3 −, and PO43− along with irrigation water quality index (IWQindex), Na%, soluble sodium percentage, sodium adsorption ratio, residual sodium bicarbonate, magnesium adsorption ratio, permeability index, and Kelley’s ratio. The results showed that most of the water samples were acidic in the pre-monsoon and alkaline in the post-monsoon seasons, and the water type was Ca-HCO3. The significant geochemical process in the area determined was calcite and dolomite mineral dissolution, and there was no active cation exchange, and silicate weathering occurred. The statistical analyses showed that both the geogenic and anthropogenic sources were controlling the chemistry of the groundwater aquifers. Concerning irrigation water quality, the results revealed that all the quality parameters and IWQindex (32.04 to 45.39) were within the safety ranges, except for the EC and total hardness. The study results would be useful for future groundwater monitoring and management of the Ganges basin areas of Bangladesh part.


1970 ◽  
Vol 34 (4) ◽  
pp. 507-608 ◽  
Author(s):  
MS Islam ◽  
SZKM Shamsad

Some important physio-chemical parameters of surface and groundwater of Bogra District were evaluated for the criteria of irrigation water quality. Forty four water samples were collected in the peak dry season (December-April) from different areas of Bogra District. The study revealed that temperature, pH, electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), total hardness (Ht) and Kelly’s ratio of waters were found within the permissible limits for irrigation purposes. Any initiative for surface and groundwater development for planned irrigation practices is highly encouraged. Key Words: Irrigation water (surface and groundwater); quality; Bogra District. DOI: 10.3329/bjar.v34i4.5836Bangladesh J. Agril. Res. 34(4) : 597-608, December 2009


2021 ◽  
Author(s):  
Abdalkarim S. Gharbia ◽  
Salem S. Gharbia ◽  
Balázs Zákányi ◽  
Márton Tóth ◽  
Peter Szucs

Abstract The groundwater is the primary source for irrigation and other purposes in the Gaza Strip. The low irrigational water quality effects on the soil quality, which interrupts the growth of plants impacting agricultural yield and can cause risk to human health. Thus, it is essential to evaluate the water quality for irrigation uses. Therefore, it is a need to understand irrigation water quality better. This study mainly focuses on the assessment of the suitability of water for irrigation. Water quality indices, known as sodium adsorption ratio, exchangeable sodium per cent (SSP or %Na), residual sodium carbonate (RSC), Kelly’s rate (KR), permeability index (PI), chloroalkaline indices (CAI1 and CAI2), potential salinity (PS), magnesium hazard (MH), total dissolved solids (TDS) and total hardness (TH), have been calculated for several wells. The majority of the wells are falling under the wrong category of water for irrigation purposes.


2020 ◽  
Vol 24 (4) ◽  
pp. 699-705
Author(s):  
G. Shyamala ◽  
S. Ramesh ◽  
N. Saravanakumar

Hydrogeochemical characteristics of Groundwater analyzed in the study area of Coimbatore district by collecting 60 samples from agricultural belt. Groundwater quality for irrigation is determined by several key factors like pH, Electrical conductivity (EC), Total suspended solids (TDS). The cations such as Sodium (Na+), Potassium (K+), Calcium (Ca2+), Magnesium (Mg2+ ) and anions are Hydrocarbon (HCO3), Carbonate (CO3 -), Chlorides (Cl-)and Sulphates (SO4 2-) are tested. The irrigation water quality parameters such as Residual Sodium Carbonate (RSC), Sodium Absorption Ratio (SAR), Chloro Alkali Indices (CA I & CAII), Kelley’s Ratio (KR), Magnesium Hazard (MH), Percent sodium (%Na) and Permeability Index (PI), Soluble sodium Percent (SSP) are computed from the key factors, anions and cations. From the USSL Diagram the samples fall in C2S1, C3S1, C4S1 range. Salinity hazard is too elevated in the study area, all the samples are categorized under high to very high with the values greater than 750 μS/cm. Total dissolved solid in the study area indicated that only 2 locations are unfit for irrigation. SAR and % Na shows that there is no hazard related to irrigation watering. Magnesium hazard in the groundwater is high and indicates 51 sample out of 60 is unsuitable for irrigation. From the study it indicates the groundwater is contaminated with salt content and in most of the area it can be used for irrigation. Keywords: Groundwater, Irrigation water quality, Salinity hazard, Kelley’s ratio, Magnesium hazard


2014 ◽  
Vol 2 (1) ◽  
pp. 30-45
Author(s):  
Omran I. Mohammad ◽  
Laheab abas Jassim

      Al-Hussainia sector is the middle sector of Al-Dalmaj irrigation project. In this study, a specified area of Al-Hussainia sector has been selected to be evaluated for its water suitability for irrigation. For Al-Hussainia main drain, the evaluation includes four stages as follows: 1- Chemical evaluation of drainage water, 2-Analysis of drainage water by Aq.Qa software,  3- Leaching requirements computations, 4- Evaluation of the drainage water quality in the specified area of the project using the Geographic Information System (GIS) software. For the chemical evaluation, the most important indicators for the salinity problem considered are (Electrical Conductivity, Total Dissolved Solids, Sodium Adsorption Ratio and Sodium Content). The test results showed that there are no harmful effects from Sodium indicators on crops production while there is a salinity problem. The residual sodium carbonate values were zero for all locations. The analysis of the hydro chemical results by Aq.Qa program shows that the internal consistency of the samples was acceptable. It is concluded that the drainage water of Al-Hussainia sector can be used directly to irrigate wheat and barley without reducing the yield with leaching requirement of 0.25 for wheat for all locations while barley needs a leaching requirement of 0.15 for locations 3,4, and 5 a leaching requirement of 0.17 should be provided for locations 1, 2, and 6. For corn crop, the drainage water is unsuitable for irrigation unless it is mixed with irrigation water to eliminate the salinity hazard. However the mixing ratio is0.5 (1:1) for all locations except location 2 where the mixing ratio needed is0.6 (1:2). The three dimensional spatial analysis using the GIS software (Arc Map V. 9.3) showed that the final model of the study area is of permissible irrigation water quality.


Author(s):  
Md. Shajedul Islam ◽  
M. G. Mostafa

<p>Groundwater is a vital source of irrigation and domestic purposes in Bangladesh, and hence, it must satisfy the water quality guidelines. The study has selected eleven (11) Districts of Bangladesh and collect secondary data regarding the irrigation water quality of groundwater. Several irrigation water indices, such as soluble sodium percentage (SSP), sodium adsorption ratio (SAR), magnesium adsorption ratio (MAR), residual sodium carbonate (RSC), Kelly’s ratio (KR), permeability index (PI), and irrigation water quality (IWQ) index are applied to evaluate irrigation water quality. According to IWQindex, the results showed 25.5% of water samples fell in highly suitability water type, whereas 33.5% exhibited low suitability type, and the remaining 41% were showed medium suitability for irrigation purposes. The values of SAR, SSP, RSBC, and MAR indices showed that about 31-64% of water samples were very good, whereas 5-20% were very poor for the same purpose. The results of TDS, EC, and total hardness showed good results as 88-93% of water samples fell in fair to excellent quality. The salinity hazard was found in the groundwater of coastal areas and completely unfit for irrigation. The study findings would help for improving the management of the groundwater resources for agricultural purposes in Bangladesh.</p>


Sign in / Sign up

Export Citation Format

Share Document