scholarly journals Stream Suspended Mud as an Indicator of Post-Mining Landform Stability in Tropical Northern Australia

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3172
Author(s):  
Devika Nair ◽  
K. G. Evans ◽  
Sean Bellairs ◽  
M. R. Narayan

Mining can cause environmental disturbances and thus mined lands must be managed properly to avoid detrimental impacts in the future. They should be rehabilitated in such a way that post mining landforms behave similarly as the surrounding stable undisturbed areas. A challenge for government regulators and mine operators is setting closure criteria for assessment of the stability of the elevated post-mining landforms. Stability of a landform is often measured by the number and incision depth of gullies. This can assess mass stability and bulk movement of coarse material. However, there is a need for a more sensitive approach to assess catchment disturbances using the concept of waves of fine suspended sediment and thus determine the dynamics of recovery of a post mining landform. A more environmentally meaningful approach would be to assess the fine suspended sediment (FSS, silt + clay (0.45 µm < diameter < 63 µm)) leaving the system and entering downstream waterways. We propose assessing stability through relationships between rainfall event loads of FSS and event discharge (Q) in receiving streams. This study used an innovative approach where, instead of using instantaneous FSS concentration, it used total FSS load in waves of sediment driven through the system by rainfall runoff events. High resolution stream monitoring data from 2004 to 2015 in Gulungul and Magela Creeks, Northern Territory, Australia, were used to develop a relationship between sediment wave and event discharge, ∑FSS α f(Q). These creeks are adjacent to and receive runoff from Ranger Mine. In 2008, a 10 ha elevated waste rock landform was constructed and instrumented in the Gulungul Creek catchment. The earthworks required to build the landform created a considerable disturbance in the catchment, making a large volume of disturbed soil and substrate material available for erosion. Between 2008 and 2010, in the first two wet seasons immediately after construction, the downstream monitoring site on Gulungul Creek showed elevated FSS wave loads relative to discharge, compared with the upstream site. From 2010 onwards, the FSS loads relative to Q were no longer elevated. This was due to the establishment of vegetation on the site and loose fine sediment being trapped by vegetation. Large scale disturbance associated with mining and rehabilitation of elevated landforms causes elevated FSS loads in receiving streams. The predicted FSS loads for the stream as per the relationships between FSS and event discharge may not show a 1:1 relation with the observed loads for respective gauging stations. When downstream monitoring shows that FSS wave loads relative to rainfall runoff event discharge reduce back to pre-construction catchment levels, it will indicate that the landform is approaching equilibrium. This approach to assess landform stability will increase the sensitivity of assessing post-mining landform recovery and assist rehabilitation engineers to heal the land and benefit owners of the land to whom it is bestowed after rehabilitation.

2007 ◽  
Vol 52 (5) ◽  
pp. 878-895 ◽  
Author(s):  
WALTER COLLISCHONN ◽  
DANIEL ALLASIA ◽  
BENEDITO C. DA SILVA ◽  
CARLOS E. M. TUCCI
Keyword(s):  

2000 ◽  
Vol 16 (3) ◽  
pp. 387-415 ◽  
Author(s):  
Igor Debski ◽  
David F. R. P. Burslem ◽  
David Lamb

All stems ≥ 1 cm dbh were measured, tagged, mapped and identified on a 1-ha plot of rain forest at Gambubal State Forest, south-east Queensland, Australia. The spatial patterns and size class distributions of 11 common tree species on the plot were assessed to search for mechanisms determining their distribution and abundance. The forest was species-poor in comparison to many lowland tropical forests and the common species are therefore present at relatively high densities. Despite this, only limited evidence was found for the operation of density-dependent processes at Gambubal. Daphnandra micrantha saplings were clumped towards randomly spaced adults, indicating a shift of distribution over time caused by differential mortality of saplings in these adult associated clumps. Ordination of the species composition in 25-m × 25-m subplots revealed vegetation gradients at that scale, which corresponded to slope across the plot. Adult basal area was dominated by a few large individuals of Sloanea woollsii but the comparative size class distributions and replacement probabilities of the 11 common species suggest that the forest will undergo a transition to a more mixed composition if current conditions persist. The current cohort of large S. woollsii individuals probably established after a large-scale disturbance event and the forest has not attained an equilibrium species composition.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2411
Author(s):  
Hamada E. Ali ◽  
Solveig Franziska Bucher

Land-use changes have huge impacts on natural vegetation, especially megaprojects, as the vegetation layer is destroyed in the course of construction works affecting the plant community composition and functionality. This large-scale disturbance might be a gateway for the establishment of invasive plant species, which can outcompete the natural flora. In contrast, species occurring in the area before the construction are not able to re-establish. In this study, we analyzed the impact of a pipeline construction on a wetland nature reserve located in northern Egypt. Therefore, we analyzed the plant species occurrence and abundance and measured each plant species’ traits before the construction in 2017 as well as on multiple occasions up to 2 years after the construction had finished on altogether five sampling events. We found that the construction activity led to the establishment of an invasive species which previously did not occur in the area, namely, Imperata cylindrica, whereas five species (Ipomoea carnea, Pluchea dioscoridis, Polygonum equisetiforme, Tamarix nilotica, and Typha domingensis) could not re-establish after the disturbance. The functionality of ecosystems assessed via the analysis of plant functional traits (plant height, specific leaf area, and leaf dry matter content) changed within species over all sampling events and within the community showing a tendency to approximate pre-construction values. Functional dispersion and Rao’s quadratic diversity were higher after the megaproject than before. These findings are important to capture possible re-establishment and recovery of natural vegetation after construction and raise awareness to the impact of megaprojects, especially in areas which are high priority for conservation.


2018 ◽  
Vol 24 (5) ◽  
pp. 2169-2181 ◽  
Author(s):  
Jonathan S. Schurman ◽  
Volodymyr Trotsiuk ◽  
Radek Bače ◽  
Vojtěch Čada ◽  
Shawn Fraver ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 948
Author(s):  
Marek Sławski ◽  
Małgorzata Sławska

The long-term effects of large-scale disturbance on forest ecosystem processes and structure are poorly understood. To assess the effects of large-scale clear-cutting on the taxonomic and functional structure of collembolan assemblages, 18 plots were established in the Polish part of Białowieża Forest. All plots, situated in a mixed Tilio-Carpinetum broad-leaved forest, had eutrophic Cambisol developed on rich glacial deposits. The Collembola assemblages in the stands that had naturally regenerated on large-scale clear-cuts performed at the beginning of the 20th century were compared to those in old-growth forests (i.e., the endpoint of stand development following stand-replacing disturbance). Collembolans, one of the most numerous soil microarthropods, are successfully used to assess the consequences of forest management and ecosystem restoration. Our study tested whether seven decades of spontaneous forest development after large-scale anthropogenic disturbance ensures the complete recovery of the soil Collembola. Using complementary taxonomic and life-form approaches, we provide evidence that the collembolan assemblages associated with the tree stands that had spontaneously developed in large harvesting plots distinctly differed from those in old-growth deciduous forests in this region despite seven decades of regenerative forest succession. The species diversity of the assemblages in the naturally regenerated tree stands was significantly lower, and their life-form structure was noticeably different from those in the reference forests. Moreover, the shift in the functional group structure of the collembolan assemblages in the stands that had regenerated after clear-cutting indicates that their activity seven decades after disturbance is concentrated mainly on the decomposition of the litter in the upper layers, whereas the processes controlled by these organisms in the deeper soil layers are not fully restored.


RBRH ◽  
2019 ◽  
Vol 24 ◽  
Author(s):  
Hugo de Oliveira Fagundes ◽  
Fernando Mainardi Fan ◽  
Rodrigo Cauduro Dias de Paiva

ABSTRACT Calibration and validation are two important steps in the application of sediment models requiring observed data. This study aims to investigate the potential use of suspended sediment concentration (SSC), water quality and remote sensing data to calibrate and validate a large-scale sediment model. Observed data from across 108 stations located in the Doce River basin was used for the period between 1997-2010. Ten calibration and validation experiments using the MOCOM-UA optimization algorithm coupled with the MGB-SED model were carried out, which, over the same period of time, resulted in 37 calibration and 111 validation tests. The experiments were performed by modifying metrics, spatial discretization, observed data and parameters of the MOCOM-UA algorithm. Results generally demonstrated that the values of correlation presented slight variations and were superior in the calibration step. Additionally, increasing spatial discretization or establishing a background concentration for the model allowed for improved results. In a station with high quantity of SSC data, calibration improved the ENS coefficient from -0.44 to 0.44. The experiments showed that the spectral surface reflectance, total suspended solids and turbidity data have the potential to enhance the performance of sediment models.


2004 ◽  
Vol 126 (5) ◽  
pp. 851-860 ◽  
Author(s):  
Stephen A. Jordan

Flow past cavities covered by perforated lids pose a challenging problem for design engineers. Kelvin–Helmholtz waves appear early in the separated shear layers above the perforations that quickly mature into large-scale coherent structures far downstream. This evolution is sustained by a hydrodynamic feedback mechanism within the cavity even when its aft wall is far removed from the lid. Herein, the results from large-eddy simulations show analogous fundamental characteristics between open and perforated-cover cavities. Both adequately scale the fundamental frequency of the large-scale disturbance using the freestream velocity and the cavity width (or lid length). Moreover, the dimensionless frequencies jump to higher modes at equivalent length scales. Unlike the open cavity, one can invoke certain conditions that instigate the instability above the perforations but not a simultaneous long-term feedback mechanism necessary to fully sustain the periodic oscillation. The lid itself offers options for mitigating (or even eliminating) the instability. Results (for laminar separation) show the perforation spacing as the key factor. While maintaining the same fundamental frequency, one can easily dampen its spectral peak to complete disappearance by extending the perforation spacing.


2018 ◽  
Vol 556 ◽  
pp. 87-99 ◽  
Author(s):  
Mingfu Guan ◽  
Sangaralingam Ahilan ◽  
Dapeng Yu ◽  
Yong Peng ◽  
Nigel Wright

Author(s):  
Chao Tian ◽  
Xinyun Ni ◽  
Jun Ding ◽  
Peng Yang ◽  
Yousheng Wu

In order to explore the fishery, oil and gas, and tourism resources in the ocean, Very Large Floating Structures (VLFS) can be deployed near islands and reefs as a logistic base with various functions such as a floating harbor, accommodation, fishery processing, oil and gas exploration, environment surveillance, airplane landing and taking off, etc. However, in addition to the complicated hydroelastic coupling effects between the hydrodynamic loads and structural dynamic responses, when tackling the hydroelastic problems of floating structures deployed near islands and reefs, several other environmental effects and numerical techniques should be taken into account: 1) The influences of the non-uniform incident waves (multi-directions, different wave frequencies); 2) Complex seabed profile and its impact on the incident waves; 3) Nonlinear second order wave exciting forces in the complex mooring system, shallow water and coral reef geological conditions; 4) Parallel computing technology and fast solving methods for the large scale linear equations, accounting for the influence of dramatic increase of number of meshes to the computation efforts and efficiency. In the present paper the theoretical investigation on the hydroelastic responses of VLFS deployed near islands and reefs has been presented. In addition, based on the pulsating source Green function, the high performance parallel fast computing techniques and other numerical methods, in solving large scale linear equations, have been introduced in the three-dimensional hydroelastic analysis package THAFTS. The motions, wave loads, distortions and stresses can be calculated using the present theoretical model and the results can be used in the design and safety assessment of VLFS.


Sign in / Sign up

Export Citation Format

Share Document