scholarly journals HCH Removal in a Biochar-Amended Biofilter

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3396
Author(s):  
Aday Amirbekov ◽  
Aigerim Mamirova ◽  
Alena Sevcu ◽  
Roman Spanek ◽  
Pavel Hrabak

This study evaluated the efficiency of two biofilter systems, with and without biochar chambers installed, at degrading and removing HCH and its isomers in natural drainage water. The biochar biofilter proved to be 96% efficient at cleaning HCH and its transformation products from drainage water, a significant improvement over classic biofilter that remove, on average, 68% of HCH. Although iron- and sulfur-oxidizing bacteria, such as Gallionella and Sulfuricurvum, were dominant in the biochar bed outflows, they were absent in sediments, which were rich in Simplicispira, Rhodoluna, Rhodoferax, and Flavobacterium. The presence of functional genes involved in the biodegradation of HCH isomers and their byproducts was confirmed in both systems. The high effectiveness of the biochar biofilter displayed in this study should further encourage the use of biochar in water treatment solutions, e.g., for temporary water purification installations during the construction of other long-term wastewater treatment technologies, or even as final solutions at contaminated sites.

PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e50507 ◽  
Author(s):  
Jinbo Xiong ◽  
Zhili He ◽  
Joy D. Van Nostrand ◽  
Guosheng Luo ◽  
Shuxin Tu ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Yuting Liang ◽  
Huihui Zhao ◽  
Ye Deng ◽  
Jizhong Zhou ◽  
Guanghe Li ◽  
...  

Author(s):  
Nickolai Shadrin ◽  
Elena Kolesnikova ◽  
Tatiana Revkova ◽  
Alexander Latushkin ◽  
Anna Chepyzhenko ◽  
...  

In the world's largest hypersaline lagoon Bay Sivash, its ecosystem twice transformed from a previous state to a new one due to human intervention. Before the North Crimean Canal construction, it was hypersaline (average salinity of 140 g l−1). The canal was built between 1963 and 1975, which resulted in intensive development of irrigated agriculture discharging drainage water into the bay. Between 1988 and 2013, salinity gradually dropped to average of 18–23 g l−1; a new ecosystem with a different biotic composition formed. In April 2014, the supply of Dnieper water into the North Crimean Canal ceased. This resulted in a gradual salinity increase in the bay to an average of 52 g l−1 in 2015. The start of second ecosystem shift was observed in 2015. In 2018, TSS, DOM and meiobenthos were studied in a salinity gradient from 30 to 88 g l−1. There was an increase in TSS and DOM with increasing salinity. The meiobenthos structure was significantly different in the bottom community and floating mats of filamentous green algae. No correlation was recorded between the number of meiobenthic macrotaxa in the sample and salinity. From 2013 to 2018, changes were seen in the taxocene structure of Nematoda and Harpacticoida. Changes in Nematoda were more dramatic and prolonged than in Harpacticoida. The structure of the Harpacticoida and Ostracoda taxocenes are less variable and more stable than that of the Nematoda taxocene. One of the reasons may be more mobility of Harpacticoida/Ostracoda than Nematoda and/or better osmoadaptation mechanisms.


Water ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 644 ◽  
Author(s):  
Stevo Lavrnić ◽  
Ilaria Braschi ◽  
Stefano Anconelli ◽  
Sonia Blasioli ◽  
Domenico Solimando ◽  
...  

mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Kai Xue ◽  
Mengting M. Yuan ◽  
Jianping Xie ◽  
Dejun Li ◽  
Yujia Qin ◽  
...  

ABSTRACT Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C 4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. IMPORTANCE Global change involves simultaneous alterations, including those caused by climate warming and land management practices (e.g., clipping). Data on the interactive effects of warming and clipping on ecosystems remain elusive, particularly in microbial ecology. This study found that clipping alters microbial responses to warming and demonstrated the effects of antagonistic interactions between clipping and warming on microbial functional genes. Clipping alone or combined with warming enriched genes degrading relatively recalcitrant carbon, likely reflecting the decreased quantity of soil carbon input from litter, which could weaken long-term soil C stability and trigger positive warming feedback. These results have important implications in assessing and predicting the consequences of global climate change and indicate that the removal of aboveground biomass for biofuel production may need to be reconsidered.


Sign in / Sign up

Export Citation Format

Share Document