scholarly journals The Influence of Landcover and Climate Change on the Hydrology of the Minjiang River Watershed

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3554
Author(s):  
Haroon Rashid ◽  
Kaijie Yang ◽  
Aicong Zeng ◽  
Song Ju ◽  
Abdur Rashid ◽  
...  

Changes in the climate and landcover are the two most important factors that influence terrestrial hydrological systems. Today, watershed-scale hydrological models are widely used to estimate the individual impacts of changes in the climate and landcover on watershed hydrology. The Minjiang river watershed is an ecologically and economically important, humid, subtropical watershed, located in south-eastern China. Several studies are available on the impacts of recent climate change on the watershed; however, no efforts have been made to separate the individual contributions of climate and landcover changes. This study is an attempt to separate the individual impacts of recent (1989–2018) climate and landcover changes on some of the important hydrological components of the watershed, and highlight the most influential changes in climate parameters and landcover classes. A calibrated soil and water assessment tool (SWAT) was employed for the study. The outcomes revealed that, during the study period, water yield decreased by 6.76%, while evapotranspiration, surface runoff and sediment yield increased by 1.08%, 24.11% and 33.85% respectively. The relative contribution of climate change to landcover change for the decrease in the water yield was 95%, while its contribution to the increases in evapotranspiration, surface runoff and sediment yield was 56%, 77% and 51%, respectively. The changes in climate parameters that were most likely responsible for changes in ET were increasing solar radiation and temperature and decreasing wind speed, those for changes in the water yield were decreasing autumn precipitation and increasing solar radiation and temperature, those for the increase in surface runoff were increasing summer and one-day maximum precipitation, while those for the increasing sediment yield were increasing winter and one-day maximum precipitation. Similarly, an increase in the croplands at the expense of needle-leaved forests was the landcover change that was most likely responsible for a decrease in the water yield and an increase in ET and sediment yield, while an increase in the amount of urban land at the expense of broadleaved forests and wetlands was the landcover change that was most likely responsible for increasing surface runoff. The findings of the study can provide support for improving management and protection of the watershed in the context of landcover and climate change.

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 12
Author(s):  
Haroon Rashid ◽  
Kaijie Yang ◽  
Aicong Zeng ◽  
Song Ju ◽  
Abdur Rashid ◽  
...  

Future climate change is expected to impact the natural systems. This study used future climate data of general circulation models (GCMs) to investigate the impacts of climate change during the future period (2062–2095) relative to the historical period (1981–2014) on the hydrological system of the Minjiang river watershed, China. A previously calibrated soil and water assessment tool (SWAT) was employed to simulate the future hydrology under the impacts of changes in temperature, precipitation, and atmospheric CO2 concentration for four shared socioeconomic pathways (SSP 1, 2, 3, and 5) of the CMIP6. The study revealed that the impacts of increase in future temperature, i.e., increase in ET, and decrease in surface runoff, water, and sediment yield will be countered by increased atmospheric [CO2], and changes in the hydrological parameters in the future will be mostly associated to changes in precipitation. Data of the GCMs for all the SSPs predicts increase in precipitation of the watershed, which will cause increase in surface runoff, water yield, and sediment yield. Surface runoff will increase more in SSP 5 (47%), while sediment and water yield will increase more in SSP 1, by 33% and 23%, respectively. At the seasonal scale, water yield and surface runoff will increase more in autumn and winter in SSP 1, while in other scenarios, these parameters will increase more in the spring and summer seasons. Sediment yield will increase more in autumn in all scenarios. Similarly, the future climate change is predicted to impact the important parameters related to the flow regime of the Minjiang river, i.e., the frequency and peak of large floods (flows > 14,000 m3/s) will increase along the gradient of scenarios, i.e., more in SSP 5 followed by 3, 2, and 1, while duration will increase in SSP 5 and decrease in the other SSPs. The frequency and duration of extreme low flows will increase in SSP 5 while decrease in SSP 1. Moreover, peak of extreme low flows will decrease in all scenarios except SSP 1, in which it will increase. The study will improve the general understanding about the possible impacts of future climate change in the region and provide support for improving the management and protection of the watershed’s water and soil resources.


2020 ◽  
Vol 5 (2) ◽  
pp. 194-206
Author(s):  
Carolyne Wanessa Lins de Andrade Farias ◽  
Suzana Maria Gico Lima Montenegro ◽  
Abelardo Antônio de Assunção Montenegro ◽  
José Romualdo de Sousa Lima ◽  
Raghavan Srinivasan ◽  
...  

Land-use change has a significant influence on runoff process of any watershed, and the deepening of this theme is essential to assist decision making, within the scope of water resources management. The study was conducted for Mundaú River Basin (MRB) using the Soil and Water Assessment Tool (SWAT) model. The study aims to assess the issue of land-use change and its effect on evapotranspiration, surface runoff, and sediment yield. Input data like land use, topography, weather, and soil data features are required to undertake watershed simulation. Two scenarios of land use were analyzed over 30 years, which were: a regeneration scenario (referring to use in the year 1987) and another scene of degradation (relating to use in the year 2017). Land use maps for 1987 and 2017 were acquired from satellite images. Overall, during the last three decades, 76.4% of forest was lost in the MRB. The grazing land increased in 2017 at a few more than double the area that existed in 1987. Changes in land use, over the years, resulted in an increase of about 37% in the water yield of MRB. Changes have led to increased processes such as surface runoff and sediment yield and in the decrease of evapotranspiration. The spatial and temporal distribution of land use controls the water balance and sediment production in the MRB.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1801 ◽  
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Land use/land cover (LULC) and climate change affect the availability of water resources by altering the magnitude of surface runoff, aquifer recharge, and river flows. The evaluation helps to identify the level of water resources exposure to the changes that could help to plan for potential adaptive capacity. In this research, Cellular Automata (CA)-Markov in IDRISI software was used to predict the future LULC scenarios and the ensemble mean of four regional climate models (RCMs) in the coordinated regional climate downscaling experiment (CORDEX)-Africa was used for the future climate scenarios. Distribution mapping was used to bias correct the RCMs outputs, with respect to the observed precipitation and temperature. Then, the Soil and Water Assessment Tool (SWAT) model was used to evaluate the watershed hydrological responses of the catchment under separate, and combined, LULC and climate change. The result shows the ensemble mean of the four RCMs reported precipitation decline and increase in future temperature under both representative concentration pathways (RCP4.5 and RCP8.5). The increases in both maximum and minimum temperatures are higher for higher emission scenarios showing that RCP8.5 projection is warmer than RCP4.5. The changes in LULC brings an increase in surface runoff and water yield and a decline in groundwater, while the projected climate change shows a decrease in surface runoff, groundwater and water yield. The combined study of LULC and climate change shows that the effect of the combined scenario is similar to that of climate change only scenario. The overall decline of annual flow is due to the decline in the seasonal flows under combined scenarios. This could bring the reduced availability of water for crop production, which will be a chronic issue of subsistence agriculture. The possibility of surface water and groundwater reduction could also affect the availability of water resources in the catchment and further aggravate water stress in the downstream. The highly rising demands of water, owing to socio-economic progress, population growth and high demand for irrigation water downstream, in addition to the variability temperature and evaporation demands, amplify prolonged water scarcity. Consequently, strong land-use planning and climate-resilient water management policies will be indispensable to manage the risks.


2011 ◽  
Vol 47 (2) ◽  
pp. 339-356 ◽  
Author(s):  
MWANGI GATHENYA ◽  
HOSEA MWANGI ◽  
RICHARD COE ◽  
JOSEPH SANG

SUMMARYClimate change and land use change are two forces influencing the hydrology of watersheds and their ability to provide ecosystem services, such as clean and well-regulated streamflow and control of soil erosion and sediment yield. The Soil Water Assessment Tool, SWAT, a distributed, watershed-scale hydrological model was used with 18 scenarios of rainfall, temperature and infiltration capacity of land surface to investigate the spatial distribution of watershed services over the 3587 km2 Nyando basin in Western Kenya and how it is affected by these two forces. The total annual water yield varied over the 50 sub-basins from 35 to 600 mm while the annual sediment yield ranged from 0 to 104 tons ha−1. Temperature change had a relatively minor effect on streamflow and sediment yield compared to change in rainfall and land surface condition. Improvements in land surface condition that result in higher infiltration are an effective adaptation strategy to moderate the effects of climate change on supply of watershed services. Spatial heterogeneity in response to climate and land use change is large, and hence it is necessary to understand it if interventions to modify hydrology or adapt to climate change are to be effective.


2017 ◽  
Vol 80 ◽  
pp. 30-35 ◽  
Author(s):  
Zongping Ren ◽  
Zhaohong Feng ◽  
Peng Li ◽  
Dan Wang ◽  
Shengdong Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document