scholarly journals Determining the Risk Level of Heavy Rain Damage by Region in South Korea

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 219
Author(s):  
Jongsung Kim ◽  
Donghyun Kim ◽  
Myungjin Lee ◽  
Heechan Han ◽  
Hung Soo Kim

For risk assessment, two methods, quantitative risk assessment and qualitative risk assessment, are used. In this study, we identified the regional risk level for a disaster-prevention plan for an overall area at the national level using qualitative risk assessment. To overcome the limitations of previous studies, a heavy rain damage risk index (HDRI) was proposed by clarifying the framework and using the indicator selection principle. Using historical damage data, we also carried out hierarchical cluster analysis to identify the major damage types that were not considered in previous risk-assessment studies. The result of the risk-level analysis revealed that risk levels are relatively high in some cities in South Korea where heavy rain damage occurs frequently or is severe. Five causes of damage were derived from this study—A: landslides, B: river inundation, C: poor drainage in arable areas, D: rapid water velocity, and E: inundation in urban lowlands. Finally, a prevention project was proposed considering regional risk level and damage type in this study. Our results can be used when macroscopically planning mid- to long-term disaster prevention projects.

Work ◽  
2021 ◽  
pp. 1-11
Author(s):  
Carlos Carvalhais ◽  
Micaela Querido ◽  
Cristiana C. Pereira ◽  
Joana Santos

BACKGROUND: The COVID-19 global pandemic brought several challenges to occupational safety and health practice. One of these is the need to (re)assess the occupational risks, particularly, biological risks. OBJECTIVE: The purpose of this work is to promote guidance to occupational safety and health practitioners when conducting a biological risk assessment in this context. METHODS: The main steps of the biological risk assessment are explained with some inputs regarding the novelty posed by SARS-CoV-2 and an example of a qualitative risk assessment method is presented. Also, its application to two different activities was exemplified. RESULTS: In both cases, the assessment considered that vulnerable workers were working from home or in medical leave. The results showed low or medium risk level for the assessed tasks. For medium risk level, additional controls are advised, such maintain social distancing, sanitize instruments/equipment before use, use proper and well-maintained PPE (when applicable), and promote awareness sessions to spread good practices at work. Employers must be aware of their obligations regarding biological risk assessment and OSH practitioners must be prepared to screen and link the abundance of scientific evidence generated following the outbreak, with the technical practice. CONCLUSIONS: This paper could be an important contribution to OSH practice since it highlights the need to (re)assess occupational risks, especially biological risk, to ensure a safe return to work, providing technical guidance.


Author(s):  
Saravanan Muthaiyah

Access control methods have been improvised over time, but one area that remains quite grey is the concept of assessing risk levels before any type of access rights are granted. This is relatively a new paradigm in the research of semantic Web security, and new methodologies for this effort are being studied. In this chapter, we will see how qualitative risk assessment (Nissanke & Khayat, 2004) and quantitative risk assessment are carried out. The purpose is to have different methods of assessment for better grant of access control rights and permissions. New examples based on the model described (Nissanke & Khayat, 2004) are used to illustrate the concept. A new quantities technique is also added to complement the qualitative techniques.


2017 ◽  
Vol 28 (4) ◽  
pp. 1272-1293 ◽  
Author(s):  
Rishabh Rathore ◽  
Jitesh J. Thakkar ◽  
Jitendra Kumar Jha

Purpose The food supply chain is exposed to severe environmental and social issues with serious economic consequences. The identification and assessment of risk involved in the food supply chain can help to overcome these challenges. In response, the purpose of this paper is to develop a risk assessment framework for a typical food supply chain. Design/methodology/approach An integrated methodology of grey analytical hierarchy process and grey technique for order preference by similarity to the ideal solution is proposed for developing a comprehensive risk index. The opinion of the experts is used to illustrate an application of the proposed methodology for the risk assessment of the food supply chain in India. Findings Valuable insights and recommendations are drawn from the results, which are helpful to the practitioners working at strategic and tactical levels in the food supply chain for minimising the supply chain disruptions. Research limitations/implications The risk quantification for the case organisation is primarily based on inputs collected from the experts working for Indian food supply chain, and so the generalisation of the results is limited to the context of developing countries. However, the generalisability of the proposed risk quantification methodology and key insights developed in the food supply chain will assist practitioners in policy making. Practical implications The risk priorities established by this research would enable an implementation of systematic risk mitigation strategies and deployment of necessary resources for leveraging the efficiency of food supply chain. Originality/value Specifically, this research has delivered a risk quantification framework and strengthened the inquiry of risk management for the food supply chain.


Author(s):  
Pramesh Tripathi ◽  
Santosh Kumar Shrestha

<p>Many Hydropower Projects in Nepal are carried out with insufficient risk assessment because of which time over run or variations are predominant. Many projects are stuck in preconstruction phase and others in construction phase. In this study all possible risks associated with the BOOT Hydropower Project in Nepal were identified and evaluated. Fuzzy rating tool has been used to quantify the risk associated with the BOOT Hydropower Projects in Nepal. It provides a flexible and easily understood way to analyze the project risks.  The relative importance (impact) of risk factors was determined from the survey results. A set of questionnaire was prepared for the survey. The survey was conducted with the experts that have experience in BOOT hydropower projects. From the survey, among the type of risks, Grid Connection / Power Evacuation, Political risk and Geological risk were found to be predominant risk respectively in BOOT hydropower projects in Nepal. The risk assessment method enabled a Risk Index (R) value to be calculated, establishing a 4-grade evaluation system: low risk having R values between 1.17 and 1.69; medium risk, between 1.69 and 2.08; high risk, between 2.08 and 2.47; extreme risk, between 2.47 and 2.78. Applicability of the methodology was tested on a real case hydropower project namely Middle Modi Hydroelectric Project (15.1 MW) which is in construction phase on Modi River in Western Region in Nepal and Madhya Bhotekosi Jalavidyut Company Ltd. (102 MW) which is also in construction phase on Bhotekoshi River in Central Region in Nepal.  The risk analysis method will give investors a more rational basis on which to make decisions and it can prevent cost and schedule overruns. An overall risk index can be used as early indicators of project problems or potential difficulties. Evaluators can keep track to evaluate the current risk level with the progress of investments.</p><p><strong>Journal of Advanced College of Engineering and Management</strong>, Vol. 3, 2017, Page: 115-125</p><p> </p>


Agriculture ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 47 ◽  
Author(s):  
Haifang He ◽  
Longqing Shi ◽  
Guang Yang ◽  
Minsheng You ◽  
Liette Vasseur

Tea plantations have used many synthetic chemicals to ensure performance and control of pests. This has led to increased contamination of soils and reduced tea growth. We assessed the levels of heavy metals, including Cd, Cr, Pb, Cu, Ni, Zn, Hg, As, and pesticide residues, such as HCHs, biphenyl chrysanthemum ester, methamidophos, imidacloprid, permethrin, in the soil of tea plantations of Taiwan, Tibet, Guangdong, and Fujian. The Potential Ecological Risk Index and the Nemerow comprehensive pollution index were used to analyze the data. The results showed that risk indices in Tibet, Guangdong and Fuzhou were considered as moderate ecological harm level. Ecological risk assessment index of Anxi organic and Anxi conventional tea gardens suggested a “low” risk level. The Nemerow comprehensive pollution indices for soil pesticide residues in the tea plantations of Taiwan, Tibet, Anxi organic and Anxi conventional were considered mild. Guangdong and Fuzhou had values suggesting “slight pollution” levels. According to National Soil Environmental Quality Standard (GB15618-1995), soil in tea plantations in Taiwan, Tibet, and Anxi conventional matched the national first grade of soil quality and those from Guangdong, Fuzhou, and Anxi organic tea garden matched the national second grade.


2020 ◽  
Vol 38 (3B) ◽  
pp. 204-211
Author(s):  
Azhar M. Haleem

Chemicals are used daily at the university, by its students or staff so it’s necessary to develop a chemical management system to protect their workers and students from accidents caused by exposure to chemicals of various forms, the present study explains the methodology for assessing the health effects and risks of exposure to chemicals in the chemical stores of University of Technology (UOT) by using semi- quantitative risk assessment technique depends on a descriptive analytical approach, by collecting the requested information for seven main stores within the university by questionnaire form included inquiries about personal information about employees, level of education and years of experience, it also included inquiries about chemical stores and storage volumes, at first identified the exposed people, detected high demand chemicals, subsequently identified the chemical hazardous factors, exposure rate and risk level of each substance, ultimately the risk was identified for 41 chemicals among them four strong acids, hydrochloric, sulfuric, nitric and chromic with high exposure rate  benzene and xylene that have high risk level, from results of chemical survey can be conclude 71% of the total chemicals classified as high to moderate risk level, so  the study recommends the continuity of the periodic assessment of chemical hazards within the stores of university, include laboratories in assessment procedures, providing of personal safety equipment.


2013 ◽  
Vol 353-356 ◽  
pp. 2286-2293 ◽  
Author(s):  
Liang Pang ◽  
Zhi Qiang Li

With global warming and sea level rising, the frequency and intensity of typhoon-rainstorm induced disasters have been increasing. The infrastructures in typhoon-rainstorm prone area are menaced by natural hazards. This paper aimed to compare the risk level for infrastructures designed by China design code and by our proposed Multivariate Compound Extreme Value Distribution (MCEVD) model. Risk assessment of some important infrastructures in typhoon-rainstorm prone areas are performed using MCEVD as follows: disaster prevention design water level for estuarine city Shanghai and design flood volume for Three Gorges Dam (TGD).The calculation results show that risk assessment based on MCEVD is a reasonable method for engineering planning, design, construction and management.


2017 ◽  
Vol 17 (2) ◽  
pp. 361-370 ◽  
Author(s):  
Jongsung Kim ◽  
◽  
Changhyun Choi ◽  
Jongso Lee ◽  
Hung Soo Kim ◽  
...  

2007 ◽  
Vol 20-21 ◽  
pp. 193-196 ◽  
Author(s):  
Katalin Gruiz ◽  
E. Vaszita ◽  
Z. Siki

A three tiered, iterative Environmental Risk Assessment methodology, including preliminary Qualitative Risk Assessment, Quantitative Hazard Assessment and Site Specific Quantitative Risk Assessment, was established to assess the environmental risk of point and diffuse pollution of mining origin at catchment scale [1]. The model site was an abandoned Pb and Zn sulphide ore mine in Gyöngyösoroszi, Toka-valley, NE Hungary [2]. The Integrated Risk Model considers the sources identified by the GIS-based (Geographical Information System) pollution map, the transport routes shown by the GIS-based flow accumulation model and the receptors of different land uses in the catchment. The site-specific quantitative risk was characterised by the Soil Testing Triad [3]. The three elements of the Triad are: physico-chemical analyses of the soil and the contaminants, the biological characterisation and ecotoxicity testing of the contaminated soil, measuring the response of single species in laboratory bioassays, the natural response of the soil microflora and plants or the dynamic response of the whole soil in microcosms. The Triad approach strongly supports the characterisation of the site specific risk as well as the selection and planning of the suitable remediation option.


Author(s):  
Aleksandra Sukhova ◽  
Elena Elizareva

Objective: Identifying an accurate quantitative risk assessment. FEC (Fuel and Energy Complex) plants are a high-risk area as they may cause manmade disasters, various accidents, pose a threat to human life and environment. In addition, the Russian energy industry is noted for its high complexity and social responsibility. Its specific feature is that it is not always possible to make an accurate quantitative risk assessment reasonably in advance and its degree determination methods are not well enough developed. In view of the above, there are some difficulties in minimizing the risks and estimating risk management costs. There has been a recent trend in improved current legislation on industrial safety and Rostechnadzor (Federal Environmental, Industrial and Nuclear Supervision Service of Russia) oversight and supervision activity practice toward implementing a risk-based approach using the risk analysis methods. It allows optimizing the methods and frequency of inspections made by regulatory bodies depending on the risk level of facilities supervised. Methods: The (accident) risk analysis is performed as a certain scientific justification set forth using qualitative and quantitative analysis of a potential accident likelihood, consequences of its occurrence, and identification of the weakest points in the engineering system or complex. Using fault tree analysis, this article identifies hazards and assesses the high-pressure gas pipeline loss of containment risk, one of the events possible for an energy provider in operation. Results: Based on the risk analysis, there has been a proposal to replace gland seal valves with bellows seal valves noted for their optimum relationship between the unit reliability, cost and sophistication level. In case the facilities with gland seal valves remain in operation, improved production process monitoring is recommended using gas leak detectors and automatic interlocking devices. Practical importance: The measures proposed will allow minimizing the gas pipeline loss of containment risk.


Sign in / Sign up

Export Citation Format

Share Document