scholarly journals The Effects of Particle Gradation on Salinized Soil in Arid and Cold Regions

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 236
Author(s):  
Xuebang Huang ◽  
Zizhao Zhang ◽  
Ruihua Hao ◽  
Zezhou Guo

Particle size grading impacts salt-frost heaving and dissolution collapse events of salinized soil on northwestern China’s arid and cold region highways. However, the influencing mechanisms remain unclear and the impact of varying particle size grading needs further investigation. Hence, this study focused on these effects and the number of freeze–thaw cycles on the characteristic changes in highway salinized soil in arid and cold regions. Three soil columns with different gradations were prepared to explore the gradation and the number of freeze–thaw cycle affects on salinized soil’s salt-frost heaving and dissolution collapse characteristics. The multi-functional physical simulation platform conducted multiple freeze–thaw cyclic tests in the laboratory. Test results confirmed significant and conclusive effects of gradation and the number of freeze–thaw cycles on salinized soil’s salt-frost heaving and dissolution collapse behaviors. Poorly graded salinized soil with high coarse particle content caused repeated freeze and thaw engineering hazards, significantly affecting salinized soil’s displacement and deformation behaviors during freezing. Contrarily, an increased range of fine particles more easily involved the characteristics of salinized soil during thawing. Therefore, the fourth freeze–thaw cycle was a crucial time node. After four freeze–thaw cycles, the displacement and deformation of original salinized soil and B-grade salinized soil samples (poorly graded with high fine particle content) tended to be stable. In contrast, the displacement and deformation of A-grade salinized soil samples (poorly graded with high coarse particle content) increased the growth rate. The present research results contribute to in-depth knowledge of the effects of gradation and freeze–thaw cycles on the characteristics of salinized soil in northwestern China, providing excellent referenced data support for the prevention and control of highway salinized soil failures and other engineering projects in arid and cold regions of northwest China.

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Zhijun Zhou ◽  
Haochen Zhan ◽  
Jiangyang Hu ◽  
Chenning Ren

The physicomechanical properties of tunnel surrounding rock are influenced by many factors such as the external environment and freeze-thaw cycles, especially in engineering in high cold regions. To understand the characteristics of freeze-thaw cycles on the creep properties of rocks in high cold regions, a freeze-thaw test, SEM test, triaxial compression test, and triaxial unloading creep test were carried out for tuffaceous sandstone in the G575 East Tianshan Tunnel in Hami, Xinjiang. The results show the following: (1) the freeze-thaw cycle reduces the degree of cementation of mineral particles in a microcosm, manifested on a macro scale by the scaling mode and crack propagation mode; (2) the effect of freeze-thaw cycles reduces the compressive strength and shear strength of rock samples (i.e., ductility enhancement); (3) for tuffaceous sandstone, the unloading process and freeze-thaw cycle each lead to improved creep deformation in rock samples, and radial deformation is more sensitive to rock deformation and failure; and (4) the creep rate of surrounding rock can be reduced by confining pressure. The peak creep rate increased with freeze-thaw time, as did the overall creep rate. Attention should be paid to deformation within a short period, and necessary supporting and protection measures should be taken to reduce creep.


2014 ◽  
Vol 919-921 ◽  
pp. 1096-1099 ◽  
Author(s):  
Hong Yu Xu ◽  
Song Yang Dang ◽  
De Yong Cui

Influence of freeze-thaw cyclic on the durability of asphalt mixture with rubber particles was researched by experiment. Based on the typed AC-13 continuous dense graded aggregate, adding the amount of 1%~3% of rubber particles into graded aggregate, the splitting tensile strength and the void fraction of asphalt mixture with rubber particles under the condition of freeze-thaw cycle were measured. The test results show that the splitting tensile strength decreases and the void fraction increases with the increase of the number of freeze-thaw cycle. With the increase of rubber particle content, the splitting tensile strength decreases and the void fraction increases under the same number of freeze-thaw cycle. When rubber particles are added to graded aggregate, the splitting tensile strength of asphalt mixture is reduced to some extent. And when the rubber particle content attains 2%, the TSR (tensile strength ratio) achieves the optimal value.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhongnian Yang ◽  
Xuesen Liu ◽  
Liang Zhang ◽  
Fujun Niu ◽  
Xianzhang Ling ◽  
...  

Expansive soil has a significant impact on the stability of many key construction projects in cold regions. To study the physical and mechanical properties of expanded soil under the condition of freeze-thaw cycle, cryogenic cyclic triaxial tests were conducted on the dynamic and the displacement characteristics of geosynthetic-reinforced expansive soil subjected to the freeze-thaw cycles. Compared with the unreinforced expansive soil samples, the effects of freeze-thaw cycles on the soil dynamics were discussed. The dynamic shear modulus (Gd) and damping ratio (λ) of the expansive soil samples are improved by reinforcement. Reinforced soil can inhibit the axial compression of the sample and restrain the frost heave deformation of the sample during the freezing process. Meanwhile, it can delay the structural damage effect caused by frost heave and reduce the rate of change of the Gd and the λ with the freeze-thaw cycle. At the same time, reinforced soil can inhibit the axial expansion, reduce the rate of reduction of the Gd, stabilize it with a higher rate, and reduce the influence of the freeze-thaw cycles on the λ of the expansive soil sample. Finally, the change of mechanical properties of expansive soil under the condition of reinforcement is obtained. The main conclusions of this paper can be used to reinforce the roadbed and foundation engineering of frozen soil in a cold region and provide support for the fiber reinforcement method of expansive soil.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Zhen-Chao Teng ◽  
Xiao-Yan Liu ◽  
Yu Liu ◽  
Yu-Xiang Zhao ◽  
Kai-Qi Liu ◽  
...  

Abstract In this study, outdoor freeze-thaw cyclic tests on the Q345 steel pipeline portion were conducted to analyze the buried oil pipeline stress evolution in a seasonally frozen soil area, namely, the Mohe–Daqing portion of China–Russia crude oil pipeline. The results obtained show that under the freeze-thaw cycle, the variation trend of soil temperature around the pipeline exhibited a hysteresis pattern, which was similar to that of atmospheric temperatures. The soil frost heaving force was shown to drop with depth, and its value at the pipe top was higher than that at the pipe bottom. With the number of freeze-thaw cycles, the frost heaving force of the soil first increased and finally stabilized, while the principal stress of the pipeline increased gradually, and its extreme value tended to be stable after 7–8 cycles, which was consistent with the “ratchet effect” theory. The above findings made it possible to elaborate on a more efficient freeze-thaw cyclic test setup for clarifying the mechanism of frozen soil/pipeline interactions.


2021 ◽  
Vol 11 (13) ◽  
pp. 5903
Author(s):  
Peng Xu ◽  
Yimin Wu ◽  
Le Huang ◽  
Kun Zhang

The linings of tunnels in cold regions with long service lives usually have cracks, with parts of the structure peeling and falling off, which seriously threatens the tunnel safety and operation. The unsaturated freeze–thaw cycle of concrete, which is the main cause of structural deterioration, has not received much research attention. During the service life of tunnels in cold regions, unsaturated freeze–thaw cycles deteriorate the quality of the concrete, and its degree presents a gradual distribution in the circumferential and longitudinal directions. An experiment system was adopted to simulate the distribution of the progressive deterioration of tunnel lining concrete. The test results of the temperature field of the model show the distribution law of freeze–thaw cycles, and the gradual deterioration of the lining concrete was realized. Then, the bearing capacity of the model was tested after the progressive deterioration. The results show that the ultimate load of the model decreases with an increase in the number of freeze–thaw cycles. Finally, a numerical simulation was carried out to discuss the influence of the gradual deterioration of the lining. The gradual deterioration of lining concrete will encourage the gradual development of cracks, leading to serious cracking of the lining structure and even block spalling. Through this study, we hope to provide useful information for the prevention and control of tunnel frost damage in cold regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiao Chen ◽  
Kesheng Li ◽  
Guilei Song ◽  
Deng Zhang ◽  
Chuanxiao Liu

AbstractRock deterioration under freeze–thaw cycles is a concern for in-service tunnel in cold regions. Previous studies focused on the change of rock mechanical properties under unidirectional stress, but the natural rock mass is under three dimensional stresses. This paper investigates influences of the number of freeze–thaw cycle on sandstone under low confining pressure. Twelve sandstone samples were tested subjected to triaxial compression. Additionally, the damage characteristics of sandstone internal microstructure were obtained by using acoustic emission (AE) and mercury intrusion porosimetry. Results indicated that the mechanical properties of sandstone were significantly reduced by freeze–thaw effect. Sandstone’ peak strength and elastic modulus were 7.28–37.96% and 6.38–40.87% less than for the control, respectively. The proportion of super-large pore and large pore in sandstone increased by 19.53–81.19%. We attributed the reduced sandstone’ mechanical properties to the degenerated sandstone microstructure, which, in turn, was associated with increased sandstone macropores. The macroscopic failure pattern of sandstone changed from splitting failure to shear failure with an increasing of freeze–thaw cycles. Moreover, the activity of AE signal increased at each stage, and the cumulative ringing count also showed upward trend with the increase of freeze–thaw number.


2021 ◽  
Vol 28 (3) ◽  
pp. 954-967
Author(s):  
Jie-lin Li ◽  
Long-yin Zhu ◽  
Ke-ping Zhou ◽  
Hui Chen ◽  
Le Gao ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huren Rong ◽  
Jingyu Gu ◽  
Miren Rong ◽  
Hong Liu ◽  
Jiayao Zhang ◽  
...  

In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was quantitatively studied by using specific surface area and pore size analyzer. The mechanism of weakening mechanical properties of single-hole yellow sandstone was expounded from the perspective of microstructure. The results show the following. (1) The number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) The damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-thaw cycles increases, different regions show different microscopic damage patterns. (3) The damage degree of yellow sandstone is different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also accelerates the damage process of pores. (4) The damage of the yellow sandstone by freeze-thaw is logarithmic function, and the damage of the yellow sandstone is a power function. The damage equation of the yellow sandstone with pores under the freezing and thawing is a log-power function nonlinear change law and presents a good correlation.


Sign in / Sign up

Export Citation Format

Share Document