scholarly journals The Effect of Trophic Modes on Biomass and Lipid Production of Five Microalgal Strains

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 240
Author(s):  
Andonia Nicodemou ◽  
Michalis Kallis ◽  
Anastasia Agapiou ◽  
Androulla Markidou ◽  
Michalis Koutinas

Five microalgae strains, namely Isochrysis galbana, Microchloropsis gaditana, Scenedesmus obliquus, Nannochloropsis oculata and Tetraselmis suecica, were selected as potential candidates for polyunsaturated fatty acids’ production, evaluating biomass productivity and their capacity to accumulate high lipid contents under different trophic modes. Microalgae strains were cultivated in the presence of 1% glucose using mixotrophic and heterotrophic conditions, while autotrophic cultures served as control experiments. The results demonstrate that S. obliquus performed the highest biomass productivity that reached 0.13 and 0.14 g L−1 d−1 under mixotrophic and heterotrophic conditions, respectively. I. galbana and S. obliquus utilized elevated contents of glucose in mixotrophy, removing 55.9% and 95.6% of the initial concentration of the carbohydrate, respectively, while glucose consumption by the aforementioned strains also remained high under heterotrophic cultivation. The production of lipids was maximal for I. galbana in mixotrophy and S. obliquus in heterotrophy, performing lipid productivities of 24.85 and 22.77 mg L−1 d−1, respectively. The most abundant saturated acid detected for all microalgae strains evaluated was palmitic acid (C16:0), while oleic and linolenic acids (C18:1n9c/C18:3n3) comprised the most abundant unsaturated fatty acids. I. galbana performed the highest linoleic acid (C18:2n6c) content under heterotrophic nutrition, which reached 87.9 mg g−1 of ash-free dry weight. Among the microalgae strains compared, the biomass and lipid production monitored for I. galbana and S. obliquus confirm that both strains could serve as efficient bioproducers for application in algal biorefineries.

Author(s):  
Ikumi Umetani ◽  
Eshetu Janka ◽  
Michal Sposób ◽  
Chris J. Hulatt ◽  
Synne Kleiven ◽  
...  

AbstractBicarbonate was evaluated as an alternative carbon source for a green microalga, Tetradesmus wisconsinensis, isolated from Lake Norsjø in Norway. Photosynthesis, growth, and lipid production were studied using four inorganic carbon regimes: (1) aeration only, (2) 20 mM NaHCO3, (3) 5% (v/v) CO2 gas, and (4) combination of 20 mM NaHCO3 and 5% CO2. Variable chlorophyll a fluorescence analysis revealed that the bicarbonate treatment supported effective photosynthesis, while the CO2 treatment led to inefficient photosynthetic activity with a PSII maximum quantum yield as low as 0.31. Conversely, bicarbonate and CO2 treatments gave similar biomass and fatty acid production. The maximum growth rate, the final cell dry weight, and total fatty acids under the bicarbonate-only treatment were 0.33 (± 0.06) day−1, 673 (± 124) mg L−1 and 75 (± 5) mg g−1 dry biomass, respectively. The most abundant fatty acid components were α-linolenic acid and polyunsaturated fatty acids constituting 69% of the total fatty acids. The fatty acid profile eventuated in unsuitable biodiesel fuel properties such as high degree of unsaturation and low cetane number; however, it would be relevant for food and feed applications. We concluded that bicarbonate could give healthy growth and comparative product yields as CO2.


2019 ◽  
Vol 8 (1) ◽  
pp. 59-64
Author(s):  
Muhammad Hanif ◽  
Fahmi Alif Utama Harahap ◽  
Heru Heru ◽  
Yuli Darni ◽  
Simparmin Br. Ginting

The higher demands of fossil energy usage are currently imbalance to its reserves. This issue will give a potency of fossil fuel scarcity that contributes on rising of its cost and disturbing economic stabilization in the future. It is desirable to find another resource which is sustainable and renewable to reduce the dependency on this resource. This study aimed to utilize the oil from instant coffee waste as biodiesel feedstocks. The coffee oil was extracted from instant-coffee waste by Soxhlet extractor and characterized its physical and chemical properties. The solvent extraction through the solid bed of coffee ground performed by five cycles interval using n-hexane as a solvent. Separation processing oil from its hydrocarbon solvent was in a rotary vacuum evaporator and the oil extract collected for further purposes. There was about 17.6% (on a dry weight basis) of coffee oil gained on 20 cycles of extraction. Analysis regarding its physicochemical properties reported that the crude oil has 0.89 g/mL of density, 43.82 mm2/s of kinematic viscosity, 44.47 mg KOH/g of acid value, and 176.40 mg KOH/g of saponification value. The fatty acids composition of the oil provided by GC-MS analyzer showed that unsaturated fatty acids contained, observed as trans-fatty acids rather than cis-fatty acids.


Author(s):  
Shinya Ikematsu ◽  
Ipputa Tada ◽  
Yasuma Nagasaki

Petroleum reserves have been decreasing in recent years and microalgae are attractive as a potential source of new biomass petroleum. Microalgae are unicellar microscopic algae and most species microalgae produce lipids. In particular, Botryococcus braunii produces large amount of lipids found with nearly 70% on the basis of the dry weight. This chapter reviews high lipid-producing microalgae found from Okinawa area around National Institute of Technology, Okinawa College (NIT, Okinawa). The microalgae collected were isolated on an AF-6 agar plates, and incubated in AF-6 medium. The fatty acids were extracted from the algae, converted into fatty acid methyl esters, and analysed by GC/MS. As a result, two microalgae strains were identified that the produced fatty acids was loaded in the algae with nearly 20% in the dry weight base. In addition, these two microalgae strains produced palmitic acid as nearly 40% of the total produced lipids. Therefore, the two microalga strains isolated are potentially and highly efficient for the organisms applied for the production of biodiesel fuel.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3648
Author(s):  
Savienne M. F. E. Zorn ◽  
Cristiano E. R. Reis ◽  
Messias B. Silva ◽  
Bo Hu ◽  
Heizir F. De Castro

This study aims to evaluate the potential of consortium biomass formation between Mucor circinelloides, an oleaginous filamentous fungal species, and Chlorella vulgaris, in order to promote a straightforward approach to harvest microalgal cells and to evaluate the lipid production in the consortium system. A synthetic medium with glucose (2 g·L−1) and mineral nutrients essential for both fungi and algae was selected. Four different inoculation strategies were assessed, considering the effect of simultaneous vs. separate development of fungal spores and algae cells, and the presence of a supporting matrix aiming at the higher recovery of algae cell rates. The results were evaluated in terms of consortium biomass composition, demonstrating that the strategy using a mature fungal mycelium with a higher algae count may provide biomass samples with up to 79% of their dry weight as algae, still promoting recovery rates greater than 97%. The findings demonstrate a synergistic effect on the lipid accumulation by the fungal strain, at around a fourfold increase when compared to the axenic control, with values in the range of 23% of dry biomass weight. Furthermore, the fatty acid profile from the samples presents a balance between saturated and unsaturated fatty acids that is likely to present an adequate balance for applications such as biodiesel production.


2020 ◽  
Vol 10 (19) ◽  
pp. 6736
Author(s):  
Randa Darwish ◽  
Mohamed A. Gedi ◽  
Patchaniya Akepach ◽  
Hirut Assaye ◽  
Abdelrahman S. Zaky ◽  
...  

Chlamydomonas reinhardtii is a green microalgae used as a model organism associated with biotechnological applications, yet its nutritional value has not been assessed. This study investigates the nutritional capacity of C. reinhardtii as an additional value for this species beyond its known potential in biofuels and bio-products production. The composition of key nutrients in C. reinhardtii was compared with Chlorella and Spirulina, the species widely regarded as a superfood. The results revealed that the protein content of C. reinhardtii (46.9%) was comparable with that of Chlorella (45.3) and Spirulina (50.4%) on a dry weight basis. C. reinhardtii contained all the essential amino acids with good scores based on FAO/WHO values (0.9–1.9) as in Chlorella and Spirulina. Unsaturated fatty acids predominated the total fatty acids profile of C. reinhardtii were ~74 of which ~48% are n-3 fatty acids. Alpha-linolenic acid (ALA) content in C. reinhardtii (42.4%) was significantly higher than that of Chlorella (23.4) and Spirulina (0.12%). For minerals, Spirulina was rich in iron (3.73 mg/g DW) followed by Chlorella (1.34 mg/g DW) and C. reinhardtii (0.96 mg/g DW). C. reinhardtii, unlike the other two species, consisted of selenium (10 µg/g DW), and had a remarkably lower heavy metal load. Moreover, C. reinhardtii contained relatively high concentrations of chlorophyll (a + b) and total carotenoids (28.6 mg/g DW and 6.9 mg/g DW, respectively) compared with Chlorella (12.0 mg/g DW and 1.8 mg/g DW, respectively) and Spirulina (8.6 mg/g DW and 0.8 mg/g DW, respectively). This study confirms that, based on its nutrient credentials, C. reinhardtii has great potential as a new superfood or ingredient for a food supplement.


2021 ◽  
pp. 1-10
Author(s):  
A.K. Mugova ◽  
C.J. Zvidzai ◽  
R. Musundire

Armoured crickets are an important food source in some parts of Zimbabwe. These insects are abundant in some regions but however, they are under utilised and not much is known about their nutritional value. The aim of this study was to determine the nutritional profile of the armoured cricket (Acanthoplus discoidalis). Armoured crickets were collected from a structured sampling framework in Mbire district Mashonaland Central province of Zimbabwe. Removal of the head and thorax, degutting and boiling were done. A proximate analysis was carried out followed by mineral, amino acid and fatty acid profiling of the prepared insects. Analyses were done on a dry basis. A. discoidalis contained 69.2% protein, 16.8% fat, 8.6% ash, 1.2% carbohydrate, 4.2% chitin and 454.3 Kcal/100 g energy. A 100 g dry weight quantity of insect contains 11.48 mg iron which is enough to meet the required daily intake of 10.0-20 mg/day for an adult. The zinc (4.37 mg/100 g dry weight) and phosphorus (491.4 mg/100 g dry weight) content in A. discoidalis almost meets the reference nutrient intake for adults. Essential amino acids, leucine (60.7 mg/g protein) had the highest concentration followed by phenylalanine+tyrosine (59.3 mg/g protein), valine (48.4 mg/g protein), lysine (46.7 mg/g protein), threonine (37.4 mg/g protein), isoleucine (26.4 mg/g protein), methionine+cysteine (20.9 mg/g protein) and histidine (16.5 mg/g protein) the least concentration. In total, 9 saturated fatty acids were determined of which stearic acid and palmitic acid had the highest concentrations of 2,034.5 mg/100 g and 2,005.3 mg/100 g respectively. Four mono unsaturated fatty acids were determined of which oleic acid and palmitoleic acid had the highest concentrations of 361.4 mg/100 g and 305.2 mg/100 g respectively. Four poly-unsaturated fatty acids were determined of which eicosapentaenoic and α-linolenic acid had the highest concentrations of 1,598.0 mg/100 g and 185.6 mg/100 g respectively. A. discoidalis is good source of protein, the minerals iron, zinc and phosphorus, some essential amino acids and poly-unsaturated fatty acids.


1968 ◽  
Vol 37 (2) ◽  
pp. 221-230 ◽  
Author(s):  
D. Jollow ◽  
G. M. Kellerman ◽  
Anthony W. Linnane

The growth conditions known to influence the occurrence of mitochondrial profiles and other cell membrane systems in anaerobic cells of S. cerevisiae have been examined, and the effect of the several growth media on the lipid composition of the organism has been determined. The anaerobic cell type containing neither detectable mitochondrial profiles nor the large cell vacuole may be obtained by the culture of the organism on growth-limiting levels of the lipids, ergosterol, and unsaturated fatty acids. Under these conditions, the organism has a high content of short-chain saturated fatty acids (10:0, 12:0), phosphatidyl choline, and squalene, compared with aerobically grown cells, and it is especially low in phosphatidyl ethanolamine and the glycerol phosphatides (phosphatidyl glycerol + cardiolipin). The high levels of unsaturated fatty acids normally found in the phospholipids of the aerobic cells are largely replaced by the short-chain saturated acids, even though the phospholipid fraction contains virtually all of the small amounts of unsaturated fatty acid present in the anaerobic cells. Such anaerobic cells may contain as little as 0.12 mg of ergosterol per g dry weight of cells while the aerobic cells contain about 6 mg of ergosterol per g dry weight. Anaerobic cell types containing mitochondrial profiles can be obtained by the culture of the organism in the presence of excess quantities of ergosterol and unsaturated fatty acids. Such cells have increased levels of total phospholipid, ergosterol, and unsaturated fatty acids, although these compounds do not reach the levels found in aerobic cells. The level of ergosterol in anaerobic cells is markedly influenced by the nature of the carbohydrate in the medium; those cells grown on galactose media supplemented with ergosterol and unsaturated fatty acids have well defined mitochondrial profiles and an ergosterol content (2 mg per g dry weight of cells) three times that of equivalent glucose-grown cells which have poorly defined organelle profiles. Anaerobic cells which are low in ergosterol synthesize increased amounts of squalene.


OCL ◽  
2019 ◽  
Vol 26 ◽  
pp. 19 ◽  
Author(s):  
Hamdy A. Zahran ◽  
Hesham Z. Tawfeuk

Peanuts (Arachis hypogaea L.) are one of the major oilseed crops of the world and are an important source of protein in many countries. In this study, some nutrients and characteristics of the seeds’ oil extracted from four peanut (Arachis hypogaea L.) varieties: Line 27r (Israel), Line 9 (Malawi), Line 4 (Brazil) and Line 18 (Israel) cultivated, for first time, in Upper Egypt were subjected to the comparative assessment with control NC variety (USA). Peanut seeds are a rich source of oil content (50.45 to 52.12 g 100 g−1 dry weight “DW”). The physicochemical properties of extracted oil were investigated in this study. The obtained data showed that the ratios of saturated fatty acids ranged from 14.24 to 17.23%, and the amounts of unsaturated fatty acids ranged from 82.77 to 85.76%. Significant variations (p ≤ 0.05) of oil content, saponification value, oleic/linoleic (O/L), and oil characteristics were found. Line 9 was found to be high in oil content, while Line 27r was said to have a high O/L ratio (3.22%) and proportion of unsaturated fatty acids (85.76%).


Author(s):  
Yenia Katerine Carreño Hernández ◽  
Ernesto Acosta Ortiz ◽  
Javier Gómez León

The influence of the diet on larval growth of the scallops Argopecten nucleus was studied, testing six microalgae diets composed by single-algae and mixed diets of the species Isochrysis galbana, Chaetoceros calcitrans y Tetraselmis suecica, handling a concentration per mL equivalent to 40000 cells of I. galbana and the response through the variables surviving, growth, appearance of the eye spot and state of condition (full, half-full and empty larvae) was measured. The diets containing I. galbana showed greater results over all the measured variables, with regard to those where it was not present. In particular, the mixed diet I. galbana + C. calcitrans presented superiority over all variables, although in the most cases was statistically similar to I. galbana + C. calcitrans + T. suecica, I. galbana + T. suecica and I. galbana alone. For the opposite, the diets with the lowest results were C. calcitrans and C. calcitrans + T. suecica. The results obtained are principally attributed to the nutritional composition mainly of high unsaturated fatty acids (HUFA) of each microalgae and each mixture supply, which is discussed in detail.


1963 ◽  
Vol 30 (1) ◽  
pp. 67-75 ◽  
Author(s):  
J. C. Hawke

SummaryThe lipid content of short rotation ryegrass at two stages of growth was followed at weekly intervals for several months in two spring-early summer seasons. Short succulent ryegrass consisting entirely of leaf tissue contained more lipid (mean, 8·1% of the dry weight) than mature ryegrass which contained appreciable stalk (mean, 5·1% of the dry weight). The lipid from the new growth contained fatty acids with appreciably higher proportions of linolenic acid, which was balanced mainly by lower proportions of linoleic and palmitic acids.When monozygotic twin milking cows were grazed on the short rotation ryegrass grown to two stages of maturity, it was found that the fatty acid composition of the milk fat from the two groups was different. The milk fat of cows grazed on the new growth contained higher proportions of oleic acid and other C18acids, whilst the proportions of myristic and palmitic acids were lower. The total proportions of the short-chain fatty acids were not greatly different, although in the group on new growth butyric acid was present in higher proportions and hexanoic and octanoic acids in lower proportions. The higher unsaturation of the fatty acids in the milk fat of this group of cows may be related to the higher levels of unsaturated fatty acids in the young ryegrass diet and to the extent to which these unsaturated fatty acids are hydrogenated in the rumen.


Sign in / Sign up

Export Citation Format

Share Document