scholarly journals A Lane Level Bi-Directional Hybrid Path Planning Method Based on High Definition Map

2021 ◽  
Vol 12 (4) ◽  
pp. 227
Author(s):  
Bin Yang ◽  
Xuewei Song ◽  
Zhenhai Gao

A global reference path generated by a path search algorithm based on a road-level driving map cannot be directly used to complete the efficient autonomous path-following motion of autonomous vehicles due to the large computational load and insufficient path accuracy. To solve this problem, this paper proposes a lane-level bidirectional hybrid path planning method based on a high-definition map (HD map), which effectively completes the high-precision reference path planning task. First, the global driving environment information is extracted from the HD map, and the lane-level driving map is constructed. Real value mapping from the road network map to the driving cost is realized based on the road network information, road markings, and driving behavior data. Then, a hybrid path search method is carried out for the search space in a bidirectional search mode, where the stopping conditions of the search method are determined by the relaxation region in the two search processes. As the search process continues, the dimension of the relaxation region is updated to dynamically adjust the search scope to maintain the desired search efficiency and search effect. After the completion of the bidirectional search, the search results are evaluated and optimized to obtain the reference path with the optimal traffic cost. Finally, in an HD map based on a real scene, the path search performance of the proposed algorithm is compared with that of the simple bidirectional Dijkstra algorithm and the bidirectional BFS search algorithm. The results show that the proposed path search algorithm not only has a good optimization effect, but also has a high path search efficiency.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
De-Xin Yu ◽  
Zhao-Sheng Yang ◽  
Yao Yu ◽  
Xiu-Rong Jiang

Combined with improved Pallottino parallel algorithm, this paper proposes a large-scale route search method, which considers travelers’ route choice preferences. And urban road network is decomposed into multilayers effectively. Utilizing generalized travel time as road impedance function, the method builds a new multilayer and multitasking road network data storage structure with object-oriented class definition. Then, the proposed path search algorithm is verified by using the real road network of Guangzhou city as an example. By the sensitive experiments, we make a comparative analysis of the proposed path search method with the current advanced optimal path algorithms. The results demonstrate that the proposed method can increase the road network search efficiency by more than 16% under different search proportion requests, node numbers, and computing process numbers, respectively. Therefore, this method is a great breakthrough in the guidance field of urban road network.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Chengtian Ouyang ◽  
Donglin Zhu ◽  
Fengqi Wang

This paper solves the drawbacks of traditional intelligent optimization algorithms relying on 0 and has good results on CEC 2017 and benchmark functions, which effectively improve the problem of algorithms falling into local optimality. The sparrow search algorithm (SSA) has significant optimization performance, but still has the problem of large randomness and is easy to fall into the local optimum. For this reason, this paper proposes a learning sparrow search algorithm, which introduces the lens reverse learning strategy in the discoverer stage. The random reverse learning strategy increases the diversity of the population and makes the search method more flexible. In the follower stage, an improved sine and cosine guidance mechanism is introduced to make the search method of the discoverer more detailed. Finally, a differential-based local search is proposed. The strategy is used to update the optimal solution obtained each time to prevent the omission of high-quality solutions in the search process. LSSA is compared with CSSA, ISSA, SSA, BSO, GWO, and PSO in 12 benchmark functions to verify the feasibility of the algorithm. Furthermore, to further verify the effectiveness and practicability of the algorithm, LSSA is compared with MSSCS, CSsin, and FA-CL in CEC 2017 test function. The simulation results show that LSSA has good universality. Finally, the practicability of LSSA is verified by robot path planning, and LSSA has good stability and safety in path planning.


2014 ◽  
Vol 644-650 ◽  
pp. 2269-2275
Author(s):  
Kai Sheng ◽  
Zhen Li ◽  
Zhi Chao Song ◽  
Hong Duan

In artificial society simulation, each artificial population needs road path planning in the process of travel. However, because of the large amounts of populations in artificial society, road path planning will cost lots computational resources and time, thus this process has terrible efficiency to the performance of the simulation system. In order to solve this problem, this article firstly makes use of CPU to generate the artificial populations, travel logs, and construct the road network models; then computes the shortest road path between each two environments and load the results in RAM for prepare; lastly, sends the ID and its start point and destination of the population who need road path querying to GPU at current simulation time in the simulation process, and then takes advantages of GPU to query the road path and return the results back. In this way, we can obviously reduce the time costs in the process of road path querying and enormously improve the performance of the whole simulation system.


2018 ◽  
Vol 7 (11) ◽  
pp. 417 ◽  
Author(s):  
Ling Zheng ◽  
Bijun Li ◽  
Hongjuan Zhang ◽  
Yunxiao Shan ◽  
Jian Zhou

High-definition (HD) maps have gained increasing attention in highly automated driving technology and show great significance for self-driving cars. An HD road network (HDRN) is one of the most important parts of an HD map. To date, there have been few studies focusing on road and road-segment extraction in the automatic generation of an HDRN. To improve the precision of an HDRN further and represent the topological relations between road segments and lanes better, in this paper, we propose an HDRN model (HDRNM) for a self-driving car. The HDRNM divides the HDRN into a road-segment network layer and a road-network layer. It includes road segments, attributes and geometric topological relations between lanes, as well as relations between road segments and lanes. We define the place in a road segment where the attribute changes as a linear event point. The road segment serves as a linear benchmark, and the linear event point from the road segment is mapped to its lanes via their relative positions to segment the lanes. Then, the HDRN is automatically generated from road centerlines collected by a mobile mapping vehicle through a multi-directional constraint principal component analysis method. Finally, an experiment proves the effectiveness of this HDRNM.


2019 ◽  
Vol 8 (12) ◽  
pp. 550 ◽  
Author(s):  
Kwangwon Seo ◽  
Jinhyun Ahn ◽  
Dong-Hyuk Im

Calculation of the shortest path between two nodes in a graph is a popular operation used in graph queries in applications such as map information systems, social networking services, and biotechnology. Recent shortest-path search techniques based on graphs stored in relational databases are able to calculate the shortest path efficiently, even in large data using frontier-expand-merge operations. However, previous approaches used a sequential bidirectional search method that causes a bottleneck, thus degrading performance. The repeated use of an aggregate SQL function also degrades performance. This paper proposes a parallel bi-directional search method using multithreading. In addition, an efficient optimization method is proposed that uses B-tree indexing instead of an aggregate SQL function. Various experiments using synthetic and real data reveal that the proposed optimization technique performs more efficiently than conventional methods. As the size of data in practical applications continues to grow, these optimizations will enable the shortest path in a graph to be found quickly and accurately.


2021 ◽  
Vol 10 (6) ◽  
pp. 370
Author(s):  
Bowen Yang ◽  
Jin Yan ◽  
Zhi Cai ◽  
Zhiming Ding ◽  
Dongze Li ◽  
...  

Emergency path planning technology is one of the research hotspots of intelligent transportation systems. Due to the complexity of urban road networks and congested road conditions, emergency path planning is very difficult. Road congestion caused by urban emergencies directly affects the original road network structure. In this way, the static weight of the original road network is no longer suitable as the basis for path recommendation. To handle the dynamic situational road network, an equidistant grid emergency path planning framework will be designed. A novel situation grid road network model, based on situation information, is proposed and applied to an equidistant grid emergency path planning framework. A situational grid heuristic search will be proposed methodology based on this model, which can be used to detect the vehicles passing around the congestion area grid and the road to the destination in the shortest time. In the path planning methodology, a grid inspired search strategy based on quaternion function is included, which can make the algorithm converge to the target grid quickly. Three graph acceleration algorithms are proposed to improve the search efficiency of path planning algorithm. Finally, this paper will set up three experiments to verify our proposed method.


1995 ◽  
Vol 23 (4) ◽  
pp. 238-255 ◽  
Author(s):  
E. H. Sakai

Abstract The contact conditions of a tire with the road surface have a close relationship to various properties of the tire and are among the most important characteristics in evaluating the performance of the tire. In this research, a new measurement device was developed that allows the contact stress distribution to be quantified and visualized. The measuring principle of this device is that the light absorption at the interface between an optical prism and an evenly ground or worn rubber surface is a function of contact pressure. The light absorption can be measured at a number of points on the surface to obtain the pressure distribution. Using this device, the contact pressure distribution of a rubber disk loaded against a plate was measured. It was found that the pressure distribution was not flat but varied greatly depending upon the height and diameter of the rubber disk. The variation can be explained by a “spring” effect, a “liquid” effect, and an “edge” effect of the rubber disk. Next, the measurement and image processing techniques were applied to a loaded tire. A very high definition image was obtained that displayed the true contact area, the shape of the area, and the pressure distribution from which irregular wear was easily detected. Finally, the deformation of the contact area and changes in the pressure distribution in the tread rubber block were measured when a lateral force was applied to the loaded tire.


2017 ◽  
Vol 11 (3) ◽  
pp. 255
Author(s):  
Jeky El Boru

Abstract: This research aims to analyze the impact of Janti Flyover Construction toward the growth of layout at Janti Urban Area, including structured space, open space, and linkage. Method used for data collecting are observation, air photograph monitoring, and interview, whereas the analysis method is qualitative description, which is the superimposed method of two layers, that are the layout condition before and after flyover construction. The result shows that the impact of Janti Flyover construction can be seen on building mass (solid), the increasing number of open spaces, including the road network, parking place, and park, whereas the relation between spaces, visually and structurally, can be seen on the growth of buildings which have new shapes and styles, therefore the performance of the overall building does not have a proportional shape. Considering Janti Street at the collective relation, its role is getting stronger as the main frame road network.Keywords: Flyover construction, layout changing, Janti AreaAbstrak: Penelitian ini bertujuan untuk menganalisis pengaruh pembangunan Jalan Layang Janti terhadap perkembangan tata ruang Kawasan Janti, meliputi ruang terbangun, ruang terbuka, serta hubungan antar ruang (“linkage”). Metode pengumpulan data dilakukan melalui observasi, pengamatan foto udara, dan wawancara; sedangkan metode analisis melalui deskripsi secara kualitatif yang berupa “superimposed method” dari dua lapisan kondisi lahan, yakni kondisi tata ruang sebelum dan sesudah pembangunan jalan layang. Hasil penelitian menunjukkan bahwa pengaruh pembangunan Jalan Layang Janti terdapat pada massa bangunan (“solid”), pertambahan ruang terbuka yang berupa jaringan jalan, parkir, dan taman; sedangkan pada hubungan antar ruang ̶ secara visual dan struktural ̶ yakni tumbuhnya bangunan dengan bentuk dan gaya baru, sehingga bentuk tampilan bangunan secara keseluruhan tidak proporsional. Pada hubungan kolektif, Jalan Janti semakin kuat perannya sebagai kerangka utama jaringan jalan.Kata kunci : Pembangunan jalan layang, tata ruang, Kawasan Janti


Sign in / Sign up

Export Citation Format

Share Document