scholarly journals Analysing the Cost-Effectiveness of Charging Stations for Electric Vehicles in the U.K.’s Rural Areas

2021 ◽  
Vol 12 (4) ◽  
pp. 232
Author(s):  
Kai Sheng ◽  
Mahdieh Dibaj ◽  
Mohammad Akrami

While U.K. authorities have attempted to tailor measures to boost sales of electric vehicles (EVs) and support citizens through different schemes, the size and geographic coverage of the existing charging network are insufficient, which undermines electromobility promotion. There are 15,853 public charging points installed in the U.K. as of 3 August 2021, and the demands for public EV charging are rising. For rural areas, there is little support from local authorities or private companies. To identify how a charging station can be installed and work, this study researches existing charging stations nationwide. Generally, most Public Charging Stations (PCS) in rural areas have unsatisfactory cost-effectiveness due to their long payback period. This paper presents how many rural PCS are able to afford the cost in the first eight years. Based on the ever-increasing demands of the market, EV producers are switching their business strategies. Meanwhile, the rural areas may become urban with the same definition. When it comes to the analysis of cost-effectiveness, it is possible for the PCS to bring more elements into the calculation. For Capital Expenditure (CAPEX) and Operation Expenditure (OPEX), the unnecessary cost leaves more profit space, like the possibility of unplanned maintenance costs.

BMJ Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. e043791
Author(s):  
Jan Bauer ◽  
Dieter Moormann ◽  
Reinhard Strametz ◽  
David A Groneberg

ObjectivesThis study wants to assess the cost-effectiveness of unmanned aerial vehicles (UAV) equipped with automated external defibrillators (AED) in out-of-hospital cardiac arrests (OHCA). Especially in rural areas with longer response times of emergency medical services (EMS) early lay defibrillation could lead to a significant higher survival in OHCA.Participants3296 emergency medical stations in Germany.SettingRural areas in Germany.Primary and secondary outcome measuresThree UAV networks providing 80%, 90% or 100% coverage for rural areas lacking timely access to EMS (ie, time-to-defibrillation: >10 min) were developed using a location allocation analysis. For each UAV network, primary outcome was the cost-effectiveness using the incremental cost-effectiveness ratio (ICER) calculated by the ratio of financial costs to additional life years gained compared with current EMS.ResultsCurrent EMS with 3926 emergency stations was able to gain 1224 life years on annual average in the study area. The UAV network providing 100% coverage consisted of 1933 UAV with average annual costs of €43.5 million and 1845 additional life years gained on annual average (ICER: €23 568). The UAV network providing 90% coverage consisted of 1074 UAV with average annual costs of €24.2 million and 1661 additional life years gained on annual average (ICER: €14 548). The UAV network providing 80% coverage consisted of 798 UAV with average annual costs of €18.0 million and 1477 additional life years gained on annual average (ICER: €12 158).ConclusionThese results reveal the relevant life-saving potential of all modelled UAV networks. Furthermore, all analysed UAV networks could be deemed cost-effective. However, real-life applications are needed to validate the findings.


2021 ◽  
Vol 13 (11) ◽  
pp. 6163
Author(s):  
Yongyi Huang ◽  
Atsushi Yona ◽  
Hiroshi Takahashi ◽  
Ashraf Mohamed Hemeida ◽  
Paras Mandal ◽  
...  

Electric vehicle charging station have become an urgent need in many communities around the world, due to the increase of using electric vehicles over conventional vehicles. In addition, establishment of charging stations, and the grid impact of household photovoltaic power generation would reduce the feed-in tariff. These two factors are considered to propose setting up charging stations at convenience stores, which would enable the electric energy to be shared between locations. Charging stations could collect excess photovoltaic energy from homes and market it to electric vehicles. This article examines vehicle travel time, basic household energy demand, and the electricity consumption status of Okinawa city as a whole to model the operation of an electric vehicle charging station for a year. The entire program is optimized using MATLAB mixed integer linear programming (MILP) toolbox. The findings demonstrate that a profit could be achieved under the principle of ensuring the charging station’s stable service. Household photovoltaic power generation and electric vehicles are highly dependent on energy sharing between regions. The convenience store charging station service strategy suggested gives a solution to the future issues.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2820 ◽  
Author(s):  
Hui Sun ◽  
Peng Yuan ◽  
Zhuoning Sun ◽  
Shubo Hu ◽  
Feixiang Peng ◽  
...  

With the popularization of electric vehicles, free charging behaviors of electric vehicle owners can lead to uncertainty about charging in both time and space. A time-spatial dispatching strategy for the distribution network guided by electric vehicle charging fees is proposed in this paper, which aims to solve the network congestion problem caused by the unrestrained and free charging behaviors of large numbers of electric vehicles. In this strategy, congestion severity of different lines is analyzed and the relationship between the congested lines and the charging stations is clarified. A price elastic matrix is introduced to reflect the degree of owners’ response to the charging prices. A pricing scheme for optimal real-time charging fees for multiple charging stations is designed according to the congestion severity of the lines and the charging power of the related charging stations. Charging price at different charging station at different time is different, it can influence the charging behaviors of vehicle owners. The simulation results confirmed that the proposed congestion dispatching strategy considers the earnings of the operators, charging cost to the owners and the satisfaction of the owners. Moreover, the strategy can influence owners to make judicious charging plans that help to solve congestion problems in the network and improve the safety and economy of the power grid.


2022 ◽  
pp. 133-155
Author(s):  
Giulio Ferro ◽  
Riccardo Minciardi ◽  
Luca Parodi ◽  
Michela Robba

The relevance of electric vehicles (EVs) is increasing along with the relative issues. The definition of smart policies for scheduling the EVs charging process represents one of the most important problems. A discrete-event approach is proposed for the optimal scheduling of EVs in microgrids. This choice is due to the necessity of limiting the number of the decision variables, which rapidly grows when a small-time discretization step is chosen. The considered optimization problem regards the charging of a series of vehicles in a microgrid characterized by renewable energy source, a storage element, the connection to the main grid, and a charging station. The objective function to be minimized results from the weighted sum of the cost for purchasing energy from the external grid, the weighted tardiness of the services provided, and a cost related to the occupancy of the socket. The approach is tested on a real case study.


2018 ◽  
Vol 10 (9) ◽  
pp. 3267 ◽  
Author(s):  
Shaohua Cui ◽  
Hui Zhao ◽  
Huijie Wen ◽  
Cuiping Zhang

As environmental and energy issues have attracted more and more attention from the public, research on electric vehicles has become extensive and in-depth. As driving range limit is one of the key factors restricting the development of electric vehicles, the energy supply of electric vehicles mainly relies on the building of charging stations, battery swapping stations, and wireless charging lanes. Actually, the latter two kinds of infrastructure are seldom employed due to their immature technology, relatively large construction costs, and difficulty in standardization. Currently, charging stations are widely used since, in the real world, there are different types of charging station with various levels which could be suitable for the needs of network users. In the past, the study of the location charging stations for battery electric vehicles did not take the different sizes and different types into consideration. In fact, it is of great significance to set charging stations with multiple sizes and multiple types to meet the needs of network users. In the paper, we define the model as a location problem in a capacitated network with an agent technique using multiple sizes and multiple types and formulate the model as a 0–1 mixed integer linear program (MILP) to minimize the total trip travel time of all agents. Finally, we demonstrate the model through numerical examples on two networks and make sensitivity analyses on total budget, initial quantity, and the anxious range of agents accordingly. The results show that as the initial charge increases or the budget increases, travel time for all agents can be reduced; a reduction in range anxiety can increase travel time for all agents.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Jim B. Himelic ◽  
Frank Kreith

Plug-in hybrid electric vehicles (PHEVs) have the potential of substantially reducing petroleum consumption and vehicular CO2 emissions relative to conventional vehicles. The analysis presented in this article first ascertains the cost-effectiveness of PHEVs from the perspective of the consumer. Then, the potential effects of PHEVs to an electric utility are evaluated by analyzing a simplified hypothetical example. When evaluating the cost-effectiveness of a PHEV, the additional required premium is an important financial parameter to the consumer. An acceptable amount for the additional upfront costs will depend on the future costs of gasoline and the on-board battery pack. The need to replace the on-board battery pack during the assumed vehicle lifetime also affects the allowed premium. A simplified unit commitment and dispatch model was used to determine the costs of energy and the CO2 emissions associated with PHEVs for different charging scenarios. The results show that electricity can be used to charge PHEVs during off-peak hours without an increase in peak demand. In addition, the combined CO2 emissions from the vehicles and the electric generation facilities will be reduced, regardless of the charging strategy.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4682 ◽  
Author(s):  
Grzegorz Sierpiński ◽  
Marcin Staniek ◽  
Marcin Jacek Kłos

Development of electromobility in urban areas requires an appropriate level of vehicle charging infrastructure. Numerous methods for siting of charging stations have been developed to date, and they appear to be delivering diverse outcomes for the same area, which is why local authorities face the problem of choosing the right station layout. The solution proposed in this article is to use a travel planner to evaluate the distribution of charging stations over the area of a metropolis. The decision making support is achieved by determining optimal travel routes for electric vehicles according to their initial state of charge for the three selected station siting methods. The evaluation focused on the following three aspects: (1) number of travels that cannot be made (due to the lack of a charging station at a certain distance around the start point), (2) extension of the travel caused by the need to recharge the vehicle on-route, and (3) additional energy consumption by electric vehicles required to reach the charging station (necessity of departing from the optimal route). An analysis of the results has made it possible to determine a solution which is superior to others. For the case study analysed in the paper, i.e., the territory of the Metropolis of Upper Silesia and Dabrową Basin (Górnośląsko-Zagłębiowska Metropolia, GZM), the distribution of charging stations established in line with method I has returned the best results. What the method in question also makes possible is to indicate a safe minimum energy reserve to complete the travel by eliminating situations of unexpected vehicle immobilisation due to on-route energy depletion and by minimising the phenomenon referred to as range anxiety.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Charles G. Tse ◽  
Benjamin A. Maples ◽  
Frank Kreith

This article is a feasibility analysis of using the batteries in plug-in hybrid electric vehicles (PHEVs) for peak shaving. The analysis focuses on energy availability of the PHEV fleet as well as the financial savings to the utilities by analyzing different charging scenarios and circuitry. The energy availability and the financial savings are heavily dependent on the location and availability of charging stations. Three charging scenarios are analyzed: charging is possible at any time; cars can only be charged overnight; and charging can be done overnight and twice during the day at the place of work for cars used for commuting. The major findings of the study are that charging only overnight will not provide sufficient energy when needed, but both other charging mechanisms can provide effective peak shaving. The charging anytime would require funding a large number of charging station, but charging overnight and at work could be accomplished with relative minor financial investments. The savings from peak shaving could be used for incentives to offset the extra cost of batteries in plug-in electric vehicles (EVs).


Author(s):  
Charles G. Tse ◽  
Benjamin A. Maples ◽  
Frank Kreith

This article is a feasibility analysis of using the batteries in Plug-in Hybrid Electric Vehicles (PHEVs) for peak shaving. The analysis focuses on energy availability of the PHEV fleet as well as the financial savings to the utilities by analyzing different charging scenarios and circuitry. The energy availability and the financial savings are heavily dependent on the location and availability of charging stations. Three charging scenarios are analyzed: charging is possible at any time; cars can only be charged overnight; charging can be done overnight and twice during the day at the place of work for cars that are used for commuting. The major findings of the study are that charging only overnight will not provide sufficient energy when needed, but both other charging mechanisms can provide effective peak shaving. The charging anytime would require funding a large number of charging station, but charging overnight and at work could be accomplished with relative minor financial investments. The savings from peak shaving could be used for incentives to offset the extra cost of batteries in plug-in electric vehicles.


Author(s):  
Ibrahim El-Fedany ◽  
Driss Kiouach ◽  
Rachid Alaoui

Electric vehicles (EVs) are seen as one of the principal pillars of smart transportation to relieve the airborne pollution induced by fossil CO2 emissions. However, the battery limit, especially where the journey is with a long-distance road remains the most formidable obstacle to the large-scale use of EVs. To overcome the issue of prolonged waiting charging time due to the large number of EVs may have a charging plan at the same charging station (CS) along the highway, we propose a communication system to manage the EVs charging demands. The architecture system contains a smart scheduling algorithm to minimize trip time including waiting time, previous reservations and energyare needed to reach the destination. Moreover, an automatic mechanism for updating reservation is integrated to adjust the EVs charging plans. The results of the evaluation under the Moroccan highway scenario connecting Rabat and Agadir show the effectiveness of our proposal system.<br /><div> </div>


Sign in / Sign up

Export Citation Format

Share Document