scholarly journals Сравнение глобальных моделей гравитационного поля на территории Магаданской области

Author(s):  
I. M. Khasanov ◽  
◽  
L. A. Muravyev ◽  

The global databases of gravity anomalies, currently available to researchers, provide a new informative tool for constructing density models of the deep structure of the earth's crust for individual regions. Currently, there are six models of gravitational anomalies, presented as a series of spherical harmonics up to 2190 degrees, which corresponds to about 10 km on the earth's surface. Different methods of processing terrestrial, marine, aerial, and satellite gravimetric data, available to their authors, determine the differences between these models, both on a global scale and within specific regions. We have performed a comparison of the EGM2008, GECO, EIGEN-6C4, and WGM2012 models with the Gravimag database on the Magadan Oblast territory. The comparison showed that free air anomalies for the EGM2008, GECO, EIGEN-6C4, and WGM2012 models in the selected area almost coincide. Bouguer anomalies of the WGM2012 model can be used in regional density modeling for adjacent regions where there are no conventional ground gravity data; however, within Magadan Oblast the Gravimag database has the best data quality.

2018 ◽  
Vol 8 (1) ◽  
pp. 145-153 ◽  
Author(s):  
O.I. Apeh ◽  
E.C. Moka ◽  
V.N. Uzodinma

Abstract Spherical harmonic expansion is a commonly applied mathematical representation of the earth’s gravity field. This representation is implied by the potential coeffcients determined by using elements/parameters of the field observed on the surface of the earth and/or in space outside the earth in the spherical harmonic expansion of the field. International Centre for Gravity Earth Models (ICGEM) publishes, from time to time, Global Gravity Field Models (GGMs) that have been developed. These GGMs need evaluation with terrestrial data of different locations to ascertain their accuracy for application in those locations. In this study, Bouguer gravity anomalies derived from a total of eleven (11) recent GGMs, using sixty sample points, were evaluated by means of Root-Mean-Square difference and correlation coeficient. The Root-Mean-Square differences of the computed Bouguer anomalies from ICGEMwebsite compared to their positionally corresponding terrestrial Bouguer anomalies range from 9.530mgal to 37.113mgal. Additionally, the correlation coe_cients of the structure of the signal of the terrestrial and GGM-derived Bouguer anomalies range from 0.480 to 0.879. It was observed that GECO derived Bouguer gravity anomalies have the best signal structure relationship with the terrestrial data than the other ten GGMs. We also discovered that EIGEN-6C4 and GECO derived Bouguer anomalies have enormous potential to be used as supplements to the terrestrial Bouguer anomalies for Enugu State, Nigeria.


The theory of the application of gravity measurements to geodetic calculations is discussed, and the errors involved in calculating deflexions of the vertical are estimated. If the gravity data are given as free air anomalies from Jeffreys’s (1948) formula, so thdt the second and third harmonics of gravity are assumed known, the orders of magnitude of the standard deviations of the different sources of error are the following: Single deflexion: neglect of gravity outside 20° 1" Difference of deflexions: neglect of gravity outside 5° 0"·5 Calculation of effects of gravity from 0º·05 to 5° 0"·1 Calculation of effects of gravity within 0º·05 between 0"·1 and 0"·5 Estimates of the deflexions are made for Greenwich, Herstmonceux, Southampton and Bayeux, and the difference between Greenwich and Southampton is compared with the astronomical and geodetic amplitudes.


2020 ◽  
Author(s):  
Lucia Seoane ◽  
Benjamin Beirens ◽  
Guillaume Ramillien

<p>We propose to cumulate complementary gravity data, i.e. geoid height and (radial) free-air gravity anomalies, to evaluate the 3-D shape of the sea floor more precisely. For this purpose, an Extended Kalman Filtering (EKF) scheme has been developed to construct the topographic solution by injecting gravity information progressively. The main advantage of this sequential cumulation of data is the reduction of the dimensions of the inverse problem. Non linear Newtonian operators have been re-evaluated from their original forms and elastic compensation of the topography is also taken into account. The efficiency of the method is proved by inversion of simulated gravity observations to converge to a stable topographic solution with an accuracy of only a few meters. Real geoid and gravity data are also inverted to estimate bathymetry around the New England and Great Meteor seamount chains. Error analysis consists of comparing our topographic solutions to accurate single beam ship tracks for validation.</p>


Science ◽  
2013 ◽  
Vol 340 (6140) ◽  
pp. 1552-1555 ◽  
Author(s):  
H. J. Melosh ◽  
Andrew M. Freed ◽  
Brandon C. Johnson ◽  
David M. Blair ◽  
Jeffrey C. Andrews-Hanna ◽  
...  

High-resolution gravity data from the Gravity Recovery and Interior Laboratory spacecraft have clarified the origin of lunar mass concentrations (mascons). Free-air gravity anomalies over lunar impact basins display bull’s-eye patterns consisting of a central positive (mascon) anomaly, a surrounding negative collar, and a positive outer annulus. We show that this pattern results from impact basin excavation and collapse followed by isostatic adjustment and cooling and contraction of a voluminous melt pool. We used a hydrocode to simulate the impact and a self-consistent finite-element model to simulate the subsequent viscoelastic relaxation and cooling. The primary parameters controlling the modeled gravity signatures of mascon basins are the impactor energy, the lunar thermal gradient at the time of impact, the crustal thickness, and the extent of volcanic fill.


1972 ◽  
Vol 9 (8) ◽  
pp. 942-959 ◽  
Author(s):  
J. M. Woodside

Detailed maps of free-air, Bouguer, and residual gravity anomalies for a survey area 250 km wide across the Mid-Atlantic Ridge between 45° and 46 °N have been compiled. The Bouguer anomaly was terrain-corrected to a radius of 40 km. The residual anomaly was computed from the terrain-corrected Bouguer anomaly using an empirical linear relationship between the Bouguer anomaly and the bathymetry to predict a 'regional' Bouguer anomaly from the depth data. North–south and east–west trends in the gravity data are enhanced in the residual anomaly; and it is suggested that at least one short east–west transform fault may offset the ridge in a right-lateral sense. The offset is presumably a response to a change in sea-floor spreading direction from west–northwest/east–southeast to west/east about 10 m.y. ago. A change in spreading rate may have occurred at the same time. A difference in accretion rate on either side of the ridge axis is indicated by asymmetry in the gravity data and by differences in the topographic compensation across the axis. Variations in the relationship of terrain-corrected Bouguer anomaly to bathymetry within the survey area suggest that a density deficiency or buoyant forces in the upper mantle are responsible for the overall elevation of the crestal mountain region but that the topography of the high-fractured plateau may be partially compensated by undulations of the crust–mantle interface.


Geofizika ◽  
2020 ◽  
Vol 37 (2) ◽  
pp. 237-261
Author(s):  
Fan Luo ◽  
Xin Tao ◽  
Guangming Fu ◽  
Chong Zhang ◽  
Kun Zhang ◽  
...  

Satellite gravity data are widely used in the field of geophysics to study deep structures at the regional and global scales. These data comprise free-air gravity anomaly data, which usually need to be corrected to a Bouguer gravity anomaly for practical application. Bouguer reduction approaches can be divided into two methods based on the coordinate system: the spherical coordinates method (SBG) and the Cartesian coordinates method; the latter is further divided into the CEBG and CBG methods, which do and do not include the Earth’s curvature correction. In this paper, free-air gravity anomaly data from the eastern Tibetan Plateau and its adjacent areas were used as the basic data to compare the CBG, CEBG, and SBG Bouguer gravity correction methods. The comparison of these three Bouguer gravity correction methods shows that the effect of the Earth’s curvature on the gravitational effect increases with increasing elevation in the study area. We want to understand the inversion accuracy for the data obtained by different Bouguer gravity reduction approaches. The depth distributions of the Moho were obtained by the interface inversion of the Bouguer gravity anomalies obtained by the CBG, CEBG, and SBG, and active seismic profiles were used as references for comparison and evaluation. The results show that the depths of the Moho obtained by the SBG inversion are more consistent with the measured seismic profile depths. Therefore, the SBG method is recommended as the most realistic approach in the process of global or regional research employing gravity data.


The Afar triangle is bordered, to the west, by a seismic belt running along and on top of the escarpment. Seventy-five percent of the seismic energy of the area is released along this belt. The epicentre distribution along the western escarpment coincides either with major north-south marginal tectonic features or with cross-rift faulting. A second epicentre lineation runs at N 15° E through central Afar. To the south-east, in the region of the Gulf of Tadjura, epicentre locations offer no distinct lineation. The sum of the free-air gravity anomalies over Afar is almost zero; Bouguer values are generally negative and strictly proportional to elevation. Absolute Bouguer positive values are found only over volcanic centres and along the northeastern coast; their maximum does not compare with the positive values found over the nearby Red Sea trough. Evidence based on attenuation and dispersion of seismic surface waves and on gravity profiles suggests a continental crustal structure of relatively ‘standard’ thickness under the Afar triangle.


2021 ◽  
Author(s):  
Leonardo Uieda ◽  
Santiago R. Soler ◽  
Agustina Pesce ◽  
Lorenzo Perozzi ◽  
Mark A. Wieczorek

<p>Gravimetry is a routine part of the geophysicists toolset, historically used in geophysics following the geodetic definitions of gravity anomalies and their related “reductions”. Several authors have shown that the geodetic concept of a gravity anomaly does not align with goals of gravimetry in geophysics (the investigation of anomalous density distributions). Much of this confusion likely stems from the lack of widely available tools for performing the corrections needed to arrive at a geophysically meaningful gravity disturbance. For example, free-air corrections are completely unnecessary since analytical expressions for theoretical gravity at any point have existed for over a decade. Since this is not easily done in a spreadsheet or short script, modern tools for processing and modelling gravity data for geophysics are needed. These tools must be trustworthy (i.e., extensively tested) and designed with software development and geophysical best practices in mind.</p><p>We present the Python libraries Harmonica and Boule, which are part of the Fatiando a Terra project (https://www.fatiando.org). Both tools are open-source under the permissive BSD license and are developed in the open by a community of geoscientists and programmers.</p><p>Harmonica provides tools for processing, forward modelling, and inversion of gravity and magnetic data. The first release of Harmonica was focused on implementing methods for processing and interpolation with the equivalent source technique, as well as forward modelling with right-rectangular prisms, point sources, and tesseroids. Current work is directed towards implementing a processing pipeline for gravity data, including topographic corrections in Cartesian and spherical coordinates, atmospheric corrections, and more. The software is still in early stages of development and design and would benefit greatly from community involvement and feedback.</p><p>Boule implements reference ellipsoids (including oblate ellipsoids, spheres, and soon triaxial ellipsoids), conversions between ellipsoidal and geocentric spherical coordinates, and normal gravity calculations using analytical solutions for gravity fields at any point outside of the ellipsoid. It includes ellipsoids for the Earth as well as other planetary bodies in the solar system, like Mars, the Moon, Venus, and Mercury. This enables the calculation of gravity disturbances for Earth and planetary data without the need for free-air corrections. Boule was created out of the shared needs of Harmonica, SHTools (https://github.com/SHTOOLS), and pygeoid (https://github.com/ioshchepkov/pygeoid) and is developed with input from developers of these projects.</p><p>We welcome participation from the wider geophysical community, irrespective of programming skill level and experience, and are actively searching for interested developers and users to get involved in shaping the future of these projects.</p>


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1057-1069 ◽  
Author(s):  
Jeong Woo Kim ◽  
Ralph R. B. von Frese ◽  
Hyung Rae Kim

We investigate the use of spectral correlation theory to analyze terrain gravity effects and free‐air gravity anomalies of Ohio for possible constraints on the thickness variations and neotectonics of the crust. Terrain gravity effects are computed from the topography by Gauss‐Legendre quadrature integration and are compared against independent free‐air gravity anomaly observations for their wavenumber correlation spectrum. Spectral correlation filters are designed accordingly to extract terrain‐correlated free‐air gravity anomalies that are subtracted from the terrain gravity effects for estimates of the compensated terrain gravity effects. These effects are used to model the Moho by inversion, assuming they predominantly reflect crustal thickness variations. Our results characterize the middle third of Ohio as a broad zone of thickened Precambrian crust, which also may include rifted regions where the thickness of the prerift crust has been reduced greatly. Furthermore, we find that about 83% of the instrumentally determined earthquake epicenters are located within the inferred thinner regions of Ohio’s crust or at their margins where compressional stresses may dominate. In general, these crustal thickness variations provide new constraints on modeling the tectonic evolution and geotechnical parameters of the crust—constraints that are important for evaluating earthquake hazards, the distribution and extraction of crustal resources, and the storage of hazardous waste and other crustal engineering applications.


2021 ◽  
Author(s):  
Dimitrios A. Natsiopoulos ◽  
Elisavet G. Mamagiannou ◽  
Eleftherios A. Pitenis ◽  
Georgios S. Vergos ◽  
Ilias N. Tziavos ◽  
...  

<p>Within the GeoGravGOCE project, funded by the Hellenic Foundation for Research Innovation, a main goal has been the densification of the available land gravity database around the eastern part of the city of Thessaloniki, Greece, where the core International Height Reference Frame (IHRF) station AUT1 is located in order to improve regional geoid and potential determination. Hence it was deemed necessary to densify the available gravity data within radiuses of 10 km, 20 km, 50 km and 100 km from the AUT1 core IHRF site. In that frame, and given the geological complexity of the region surrounding Thessaloniki and the significant variations of the terrain, gravity campaigns were appropriately designed and gravity measurements were carried out in order to densify the database and cover as much as possible traverses of varying altitude. The measurements have been carried out with the CG5 gravity meter of the GravLab group and dual-frequency GNSS receivers in RTK mode for orthometric height determination. In this  study we provide details of the gravity campaigns, the measurement principle and the finally derived gravity and free-air gravity anomalies. The mean measurement accuracy achieved was at the ~20 μGal level for the gravity measurements and ~3 cm for the orthometric heights. In all cases the final derived gravity value was based on the absolute point established by the GravLab team at the AUTH seismological station premises with the A10 (#027) absolute gravity meter.</p>


Sign in / Sign up

Export Citation Format

Share Document