Faculty Opinions recommendation of Colonial architecture in mixed species assemblages affects AHL mediated gene expression.

Author(s):  
Eric S Gilbert
2005 ◽  
Vol 244 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Vince P. Mason ◽  
Gerard H. Markx ◽  
Ian P. Thompson ◽  
Joanna S. Andrews ◽  
Mike Manefield

2021 ◽  
Vol 171 ◽  
pp. 13-28
Author(s):  
Łukasz Jermacz ◽  
Csilla Balogh ◽  
Jarosław Kobak

Birds ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 404-414
Author(s):  
Claudia Mettke-Hofmann

Animals invest in costly vigilance to detect threats. Joining groups reduces these costs, which can be further reduced in mixed-species assemblages. In colour-polymorphic species, morphs often experience different predation pressure and vary in a variety of traits. However, little is known about differences in vigilance or how group composition affects vigilance. The aim was to investigate whether higher conspicuousness increased vigilance and whether vigilance was reduced in mixed-morph groups like in mixed-species assemblages. I tested vigilance in the colour-polymorphic Gouldian Finch (Chloebia gouldiae). Same sex pairs of different age and of either pure (red-red or black-black) or mixed head colour were exposed to three contexts (familiar, changed and novel environment) and head movements were recorded. All birds reduced the frequency of head movements with increasing novelty, indicating different vigilance strategies (switching from a searching to a tracking strategy) depending on the situation. While vigilance did not differ between morphs, morph composition mattered. Black-headed pairs made fewer head movements than mixed-head colour pairs. Results indicated that conspicuousness did not affect vigilance, possibly due to existing adaptations to reduce predation risk. However, whenever red-headed birds were involved, vigilance increased either because of higher group conspicuousness or prevalence of aggression.


2015 ◽  
Vol 282 (1799) ◽  
pp. 20141517 ◽  
Author(s):  
Farrah T. Chan ◽  
Johanna Bradie ◽  
Elizabeta Briski ◽  
Sarah A. Bailey ◽  
Nathalie Simard ◽  
...  

Mixed-species assemblages are often unintentionally introduced into new ecosystems. Analysing how assemblage structure varies during transport may provide insights into how introduction risk changes before propagules are released. Characterization of introduction risk is typically based on assessments of colonization pressure (CP, the number of species transported) and total propagule pressure (total PP, the total abundance of propagules released) associated with an invasion vector. Generally, invasion potential following introduction increases with greater CP or total PP. Here, we extend these assessments using rank-abundance distributions to examine how CP : total PP relationships change temporally in ballast water of ocean-going ships. Rank-abundance distributions and CP : total PP patterns varied widely between trans-Atlantic and trans-Pacific voyages, with the latter appearing to pose a much lower risk than the former. Responses also differed by taxonomic group, with invertebrates experiencing losses mainly in total PP, while diatoms and dinoflagellates sustained losses mainly in CP. In certain cases, open-ocean ballast water exchange appeared to increase introduction risk by uptake of new species or supplementation of existing ones. Our study demonstrates that rank-abundance distributions provide new insights into the utility of CP and PP in characterizing introduction risk.


2021 ◽  
Vol 9 (11) ◽  
pp. 2368
Author(s):  
Qiuxiang Zhang ◽  
Jiaxun Li ◽  
Wenwei Lu ◽  
Jianxin Zhao ◽  
Hao Zhang ◽  
...  

Lactiplantibacillus plantarum CCFM8724 is a probiotic with the potential to prevent dental caries in vitro and in vivo. To explore the effects of this probiotic at inhibiting Streptococcus mutans-Candida albicans mixed-species biofilm and preventing dental caries, multi-omics, including metabolomics and transcriptomics, was used to investigate the regulation of small-molecule metabolism during biofilm formation and the gene expression in the mixed-species biofilm. Metabolomic analysis revealed that some carbohydrates related to biofilm formation, such as sucrose, was detected at lower levels due to the treatment with the L. plantarum supernatant. Some sugar alcohols, such as xylitol and sorbitol, were detected at higher levels, which may have inhibited the growth of S. mutans. In transcriptomic analysis, the expression of the virulence genes of C. albicans, such as those that code agglutinin-like sequence (Als) proteins, was affected. In addition, metabolomics coupled with a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and RNA-seq revealed that the L. plantarum supernatant had an active role in sugar metabolism during the formation of the S. mutans-C. albicans mixed-species biofilm, and the L. plantarum supernatant was also related to carbohydrate utilization, glucan biosynthesis, and mycelium formation. Hence, L. plantarum CCFM8724 decreased the mixed-species biofilm mass from the perspective of gene expression and metabolic reprogramming. Our results provide a rationale for evaluating L. plantarum CCFM8724 as a potential oral probiotic for inhibiting cariogenic pathogen biofilm formation and improving dental caries.


Sign in / Sign up

Export Citation Format

Share Document