Faculty Opinions recommendation of Transiently reorganized microtubules are essential for zippering during dorsal closure in Drosophila melanogaster.

Author(s):  
Elizabeth Gavis
eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Juan Jose Fraire-Zamora ◽  
Johannes Jaeger ◽  
Jérôme Solon

Evolution of morphogenesis is generally associated with changes in genetic regulation. Here, we report evidence indicating that dorsal closure, a conserved morphogenetic process in dipterans, evolved as the consequence of rearrangements in epithelial organization rather than signaling regulation. In Drosophila melanogaster, dorsal closure consists of a two-tissue system where the contraction of extraembryonic amnioserosa and a JNK/Dpp-dependent epidermal actomyosin cable result in microtubule-dependent seaming of the epidermis. We find that dorsal closure in Megaselia abdita, a three-tissue system comprising serosa, amnion and epidermis, differs in morphogenetic rearrangements despite conservation of JNK/Dpp signaling. In addition to an actomyosin cable, M. abdita dorsal closure is driven by the rupture and contraction of the serosa and the consecutive microtubule-dependent seaming of amnion and epidermis. Our study indicates that the evolutionary transition to a reduced system of dorsal closure involves simplification of the seaming process without changing the signaling pathways of closure progression.


2002 ◽  
Vol 22 (11) ◽  
pp. 3685-3697 ◽  
Author(s):  
Kai Ping Sem ◽  
Baharak Zahedi ◽  
Ivan Tan ◽  
Maria Deak ◽  
Louis Lim ◽  
...  

ABSTRACT We have characterized Drosophila melanogaster ACK (DACK), one of two members of the ACK family of nonreceptor tyrosine kinases in Drosophila. The ACKs are likely effectors for the small GTPase Cdc42, but signaling by these proteins remains poorly defined. ACK family tyrosine kinase activity functions downstream of Drosophila Cdc42 during dorsal closure of the embryo, as overexpression of DACK can rescue the dorsal closure defects caused by dominant-negative Dcdc42. Similar to known participants in dorsal closure, DACK is enriched in the leading edge cells of the advancing epidermis, but it does not signal through activation of the Jun amino-terminal kinase cascade operating in these cells. Transcription of DACK is responsive to changes in Dcdc42 signaling specifically at the leading edge and in the amnioserosa, two tissues involved in dorsal closure. Unlike other members of the ACK family, DACK does not contain a conserved Cdc42-binding motif, and transcriptional regulation may be one route by which Dcdc42 can affect DACK function. Expression of wild-type and kinase-dead DACK transgenes in embryos, and in the developing wing and eye, reveals that ACK family tyrosine kinase activity is involved in a range of developmental events similar to that of Dcdc42.


2011 ◽  
Vol 192 (2) ◽  
pp. 335-348 ◽  
Author(s):  
Caroline Laplante ◽  
Laura A. Nilson

During Drosophila melanogaster dorsal closure, lateral sheets of embryonic epidermis assemble an actomyosin cable at their leading edge and migrate dorsally over the amnioserosa, converging at the dorsal midline. We show that disappearance of the homophilic cell adhesion molecule Echinoid (Ed) from the amnioserosa just before dorsal closure eliminates homophilic interactions with the adjacent dorsal-most epidermal (DME) cells, which comprise the leading edge. The resulting planar polarized distribution of Ed in the DME cells is essential for the localized accumulation of actin regulators and for actomyosin cable formation at the leading edge and for the polarized localization of the scaffolding protein Bazooka/PAR-3. DME cells with uniform Ed fail to assemble a cable and protrude dorsally, suggesting that the cable restricts dorsal migration. The planar polarized distribution of Ed in the DME cells thus provides a spatial cue that polarizes the DME cell actin cytoskeleton, defining the epidermal leading edge and establishing its contractile properties.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2299-2307 ◽  
Author(s):  
Q.J. Li ◽  
T.M. Pazdera ◽  
J.S. Minden

The Drosophila melanogaster embryo ordinarily undergoes thirteen cycles of rapid syncytial division followed by three rounds of cellular division for most cells. Strict regulation of the number of divisions is believed to be essential for normal patterning and development. To determine how the embryo responds to hyperplastic growth, we have examined epidermal development in embryos that experience additional rounds of mitosis as the result of ectopic Cyclin E expression. We observed that the cell density in the epidermis nearly doubled within 1 hour of Cyclin E induction. The spacing and width of the ENGRAILED and wingless stripes was unchanged, but the cell density within the stripes was increased. By 4 hours after Cyclin E induction, the cell density had returned to almost normal values. The embryos developed, albeit more slowly, to produce viable larvae and adults. The excess cells were removed by apoptosis in a reaper-dependent fashion as evidenced by increased reaper expression. Embryos lacking cell death in the abdomen exhibited changes in ENGRAILED expression. In addition, germband retraction and dorsal closure were slower than normal. Ectopic Cyclin E expression in cell-death-deficient embryos exacerbated the germband retraction and ENGRAILED-expression defects.


2017 ◽  
Author(s):  
Juan J. Fraire-Zamora ◽  
Johannes Jaeger ◽  
Jérôme Solon

AbstractEvolution of morphogenesis is generally associated with changes in genetic regulation. Here we report evidence indicating that dorsal closure, a conserved morphogenetic process in dipterans, evolved as the consequence of rearrangements in epithelial organization rather than signaling regulation. In Drosophila melanogaster, dorsal closure consists of a two-tissue system where the contraction of extraembryonic amnioserosa and a JNK/Dpp-dependent epidermal actomyosin cable result in microtubule-dependent seaming of the epidermis. We find that dorsal closure in Megaselia abdita, a three-tissue system comprising serosa, amnion and epidermis, differs in morphogenetic rearrangements despite conservation of JNK/Dpp signaling. In addition to an actomyosin cable, M. abdita dorsal closure is driven by the rupture and contraction of the serosa and the consecutive microtubule-dependent seaming of amnion and epidermis. Our study indicates that the evolutionary transition to a reduced system of dorsal closure involves simplification of the seaming process without changing the signaling pathways of closure progression.Impact StatementEvolutionary reduction in tissue number involves the simplification of the seaming process but not signaling during epithelial fusion.


2020 ◽  
Author(s):  
Gesa F. Dinges ◽  
Alexander S. Chockley ◽  
Till Bockemühl ◽  
Kei Ito ◽  
Alexander Blanke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document