scholarly journals Faculty Opinions recommendation of The sixth edition of the WHO manual for human semen analysis: A critical review and SWOT analysis

Author(s):  
Nicholas Tadros
Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1368
Author(s):  
Florence Boitrelle ◽  
Rupin Shah ◽  
Ramadan Saleh ◽  
Ralf Henkel ◽  
Hussein Kandil ◽  
...  

Semen analysis is the cornerstone of male fertility evaluation with WHO guidelines providing the basis for procedural standardization and reference values worldwide. The first WHO manual was published in 1980, and five editions have been subsequently released over the last four decades. The 6th Edition was published in July 2021. In this review, we identify the key changes of this 6th Edition. Additionally, we evaluate the utility of this 6th Edition in clinical practice using SWOT (strengths, weaknesses, opportunities, and threats) analysis. This new Edition has made the analysis of basic semen parameters more robust, taking into account the criticisms and grey areas of the previous editions. The tests assessing sperm DNA fragmentation and seminal oxidative stress are well-described. The main novelty is that this latest edition abandons the notion of reference thresholds, suggesting instead to replace them with “decision limits”. While this seems attractive, no decision limits are proposed for either basic semen parameters, or for extended or advanced parameters. This critical review of the 6th Edition of the WHO laboratory manual combined with a SWOT analysis summarizes the changes and novelties present in this new Edition and provides an in-depth analysis that could help its global use in the coming years.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Best ◽  
M Kuchakulla ◽  
K Khodamoradi ◽  
T Lima ◽  
F Frech ◽  
...  

Abstract Study question Is the SARS-CoV–2 virus present in human semen and what is the impact on semen parameters following an infection? Summary answer SARS-CoV–2 infection, though not detected in semen of recovered men, can affect TSN in ejaculate in the acute setting. What is known already Early epidemiological data has suggested that the primary mode of transmission is through respiratory droplets, but the presence of SARS-CoV–2 has been identified in other bodily fluids such as feces, urine, and semen. Study design, size, duration We prospectively recruited thirty men diagnosed with acute SARS-CoV–2 infection using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of pharyngeal swab specimens. Thirty semen samples from recovered men were obtained 11–64 days after testing positive for SAR-CoV–2 infection. The median duration between positive SAR-CoV–2 test and semen collection was 37 days (IQR=23). Participants/materials, setting, methods Semen samples were collected from each individual using mailed kits. Follow-up semen samples were done with mailed kits or in-person in office setting. Semen analysis and PCR was performed after samples were received. Main results and the role of chance The median total sperm number (TSN) in ejaculate was 12.5 million (IQR=53.1). When compared with age-matched SARS-CoV–2(-) men, TSN was lower among SARS-CoV–2(+) men (p = 0.0024). Five men completed a follow-up sperm analysis (median 3 months) and had a median TSN of 18 million (IQR=21.6). No RNA was detected by means of RT-PCR in the semen in 16 samples tested. Limitations, reasons for caution First, most of the semen samples came from non-severe men of whom were in the recovery stage and lacked symptoms. Additionally, our sample size was relatively small and overnight mail-in semen analysis kits were used during the acute phase of infection to minimize contact with positive subjects. Wider implications of the findings: Our findings suggest extremely low risk of viral transmission during sexual contact and assisted reproductive techniques, although further data need to be obtained. The impact on TSC in recovered men from SARS-CoV–2 infection is concerning, nevertheless long-term follow-up of these men is critical to determine the nadir of TSC. Trial registration number 20200401


Andrologia ◽  
2019 ◽  
Vol 51 (11) ◽  
Author(s):  
Ashok Agarwal ◽  
Ralf Henkel ◽  
Chun‐Chia Huang ◽  
Maw‐Sheng Lee

2018 ◽  
Vol 30 (6) ◽  
pp. 867 ◽  
Author(s):  
M. T. Gallagher ◽  
D. J. Smith ◽  
J. C. Kirkman-Brown

The human semen sample carries a wealth of information of varying degrees of accessibility ranging from the traditional visual measures of count and motility to those that need a more computational approach, such as tracking the flagellar waveform. Although computer-aided sperm analysis (CASA) options are becoming more widespread, the gold standard for clinical semen analysis requires trained laboratory staff. In this review we characterise the key attitudes towards the use of CASA and set out areas in which CASA should, and should not, be used and improved. We provide an overview of the current CASA landscape, discussing clinical uses as well as potential areas for the clinical translation of existing research technologies. Finally, we discuss where we see potential for the future of CASA, and how the integration of mathematical modelling and new technologies, such as automated flagellar tracking, may open new doors in clinical semen analysis.


1995 ◽  
Vol 1 (4) ◽  
pp. 343-362 ◽  
Author(s):  
F Comhaire
Keyword(s):  

2012 ◽  
Vol 3 (3) ◽  
pp. 78-82 ◽  
Author(s):  
MS Srinivas ◽  
Vickram Sundaram ◽  
M Ramesh Pathy ◽  
TB Sridharan

ABSTRACT Aim To elucidate the concentration of the protein and cholesterol in different fractions of human semen from different infertile categories and comparing them with the fertile group. Materials and methods The human semen was collected from different infertile categories including oligoasthenospermia, asthenospermia, azoospermia, normospermia, oligospermia and fertile group. Immediately after collection, the semen analysis was done as per WHO standard protocols. After that, the semen was centrifuged to get the different fractions. Four main fractions were obtained, (1) spermatozoa, (2) debris or material that precipitates at 12 K rpm for 10 minutes, (3) prostasomes which was precipitated at 20K rpm for 120 minutes, (4) seminal plasma. The protein concentration was done by Lowry's method and cholesterol was estimated by diagnostic kit. Results Sodium dodecyl sulfate—polyacrylamide gel electrophoresis (SDS PAGE) was run for all the categories of semen samples for their seminal plasma and the fertility associated protein was identified. A significant difference was found in the concentration of proteins in all subfractions when compared between control and infertile categories. Almost 86% of the protein was recovered from soluble fraction. In case of azoospermia, the protein content was very low when compared with fertile group. Seminal plasma proteins were visualized by silver staining. The molecular weight of the protein bands were ranging from 6.5 to 205 kDa. The band with molecular weight around 55 kDa was found to be missing in case of oligoasthenospermia. This particular protein is said to be fertility associated protein. The content of cholesterol for different subfraction of the human semen samples from infertile and fertile samples was compared. A wide range of cholesterol was recovered from prostasomes, that too purified. Conclusion A thrive study have to be done in all the subfractions of the semen irrespective of the category of samples to know the exact function of the each subfractions in terms of protein and cholesterol distribution. How to cite this article Sundaram V, Srinivas MS, Rao KA, Pathy MR, Sridharan TB. A Comparative Study of Distribution of Protein and Cholesterol in Various Fractions of Human Semen from Infertile and Fertile Subjects. Int J Infertility Fetal Med 2012;3(3):78-82.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
S Esteves

Abstract text Male factor infertility is associated with impaired overall health, decreased life expectancy, lower quality of life and may affect reproductive outcomes even under assisted reproductive technology (ART) settings. Male factors, alone or combined with female factors, contribute to at least 50% of reported infertility cases. Despite this, the male partner is often overlooked in the evaluation and treatment of infertility. A routine semen analysis is frequently the only test carried out to assess a man’s fertility potential. The state-of-art on how the human semen should be assessed is provided by the World Health Organization (WHO), which periodically releases manuals that include specific protocols and reference standards. These manuals include detailed laboratory methods for semen examination, protocols for sperm preparation and cryopreservation, quality assurance and quality control, results’ interpretation, and reference ranges. Unlike the previous four versions, the latest 2010 WHO reference values relied on clinical chemistry principles to generate 95% intervals for sperm volume, count, motility, vitality, and morphology from recent fathers. The fifth centile was deemed suitable for representing semen characteristics at lower limits. The reference values ultimately obtained were markedly lower than those previously reported, raising concerns about its clinical utility and generalizability. Criticisms included the limited geographical area of patients analyzed, the methods used for semen evaluation, and the potential impact of the new reference range on patient referral, diagnosis, and treatment guidance. An updated new WHO manual (6th edition) is about to be released with much expectation. Although semen analysis remains one of the cornerstones of the infertility evaluation, a male infertility workup primarily based on routine semen analysis does not provide men with an optimal fertility pathway for many reasons. First, reference intervals do not reliably distinguish fertile from subfertile subjects. Second, an individual patient’s results have limited prognostic value for both natural and assisted conception unless at extreme lower limits. Third, there is a wide variation in how laboratories perform a semen analysis. Lastly, routine semen analysis does not detect sperm DNA defects that might adversely impact embryo development, implantation, and offspring’s health. Guidelines issued by professional societies recommend that a full andrological assessment be performed in all men with couple infertility. Well-trained reproductive urologists or clinical andrologists should perform the male evaluation, including a detailed history, physical examination, semen analysis, endocrine assessment, and other tests as needed. Therefore, the importance of WHO manuals remains critical. However, the goals of a comprehensive male infertility workup go beyond the laboratory assessment of human semen. It comprises i. Diagnosis, i.e., detection of any underlying relevant medical or lifestyle conditions potentially impairing the (reproductive) health of the male or his offspring; ii. Counselling, particularly regarding the impact of infertility, genetic factors, age, and lifestyle on pregnancy prospects, reproductive and overall health, and offspring’s well-being; and iii. Management Guidance, i.e., identifying optimal treatment options to improve the likelihood of achieving natural pregnancy or ART success. The prevention and management of male infertility are integral components of comprehensive sexual and reproductive health services needed to attain a sustainable development goal.


1987 ◽  
Vol 47 (4) ◽  
pp. 714-716 ◽  
Author(s):  
Steven H. Brenner ◽  
Joseph B. Lesing ◽  
Cy Schoenfeld ◽  
Laura T. Goldsmith ◽  
Richard Amelar ◽  
...  
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2296 ◽  
Author(s):  
Fabrizio Ascione ◽  
Rosa Francesca De Masi ◽  
Margherita Mastellone ◽  
Silvia Ruggiero ◽  
Giuseppe Peter Vanoli

The green wall is an engineered technology for stormwater management and climate change mitigation at the urban level. At the building scale, these energy efficiency measures are suitable for improving indoor comfort conditions and for reducing energy needs. Several guidelines are available about vertical greening systems, but these propose design parameters and performance evaluation criteria, often incomparable. In order to facilitate the implementation of proper technical standards, this paper proposes a critical review of more recent scientific investigations. All parameters for the design optimization are discussed as well as the achievable social and private benefits by taking into consideration the type of study (numerical or experimental), the climate conditions, the analysis period, all technical requirements of the green layer as well as of the back wall. The review underlines that a multi-criteria design approach is needed for green vertical systems. Thus, the paper is concluded with a SWOT analysis, evidencing “strengths”, “weaknesses”, “opportunities” and “threats”. The analysis shows that the highlighted benefits will acquire greater relevance considering the increase in global temperatures and the growing need to redevelop densely built urban centers, while some negative aspects may be filled in the future with a deeper preparation of designers and careful choice of materials. The review paper shows, therefore, drivers and barriers occurring designing and implementing green walls.


Sign in / Sign up

Export Citation Format

Share Document