scholarly journals Prevalence and Antibiotic Resistance of Helicobacter pullorum Isolates in Poultry From Semnan Province, Iran

2020 ◽  
Vol 8 (3) ◽  
pp. 101-106
Author(s):  
Hosein Akhlaghi ◽  
Seyed Hesamodin Emadi Chashmi ◽  
Ashkan Jebelli Javan

Background: Helicobacter pullorum predominantly colonizes the gut of apparently healthy chickens and the livers and intestinal contents of hens with enteritis and vibrionic hepatitis. Objective: The aim of this study was to assess the prevalence and antibiotic resistance of Helicobacter pullorum in broiler chickens, laying hens, and turkeys in Semnan province. Materials and Methods: A total of 300 samples were collected from 60 poultry farms in Semnan province, including 240 cecal samples from 48 broiler farms, 30 fecal samples from 6 laying hen farms, and 30 cecal samples from 6 turkey farms. Each sample was analyzed by conventional culture method and biochemical tests. The suspected colonies were subjected to polymerase chain reaction (PCR) using 16S rRNA gene. Antibiotic resistance of the confirmed colonies was determined using disk diffusion method. Results: Of 300 samples, 85 (28.3%) samples obtained from 36 (60%) poultry farms were positive for H. pullorum. Of these samples, 72 (30%) were from 30 (62.5%) broiler farms, 4 (13.3%) were from 2 (33.3%) laying hen farms, and 9 (30%) were from 4 (66.7%) turkey farms. Moreover, resistance to ciprofloxacin was observed in all of the H. pullorum isolates. Conclusion: This study demonstrated the moderate prevalence of H. pullorum in poultry in Semnan province for the first time, while the prevalence of this pathogen in laying hen and turkey has not been determined in Iran. In addition, this study could reveal the antibiotic resistance profile of H. pullorum as the first report in Iran. Therefore, more studies are needed to focus on the prevalence and antibiotic resistance of H. pullorum in poultry in other regions of Iran.

2021 ◽  
Vol 8 (4) ◽  
pp. 303-308
Author(s):  
Hosein Akhlaghi ◽  
Seyed Hesamodin Emadi Chashmi ◽  
Ashkan Jebelli Javan

Background: Helicobacter pullorum can infect the intestinal tracts of both humans and avian species. This study aimed to assess the frequency and antibiotic resistance of H. pullorum isolated from workers in the poultry slaughterhouses, farms, and markets as exposed population and healthy people who referred to the hospital as non-exposed population by culture method and polymerase chain reaction (PCR) test. Methods: Two hundred healthy individuals, including 100 individuals from exposed population and 100 from non-exposed population were selected in Semnan. Fresh stool samples were examined by conventional culture method and biochemical tests. PCR test with 16S rRNA gene was employed to confirm the H. pullorum isolates. Antibiotic resistance test was done using the disk diffusion method and various antimicrobial agents. Results: Generally, 17 (17%) samples from exposed population and 12 (12%) samples from non-exposed population were H. pullorum positive by culture method and biochemical tests. However, PCR test could confirm 10 (10%) and 7 (7%) samples from exposed and non-exposed populations, respectively. Therefore, the frequency of H. pullorum was determined to be 9.5%. Antibiotic resistance test could reveal that most of the isolates were resistant to ciprofloxacin (84.2%), whereas resistance to colistin and fosfomycin was found to be 15.8%. Conclusion: The present study illustrated that H. pullorum can be present among healthy population with the low frequency rate. Moreover, it was indicated that the frequency of this food-borne pathogen is high in the exposed population. Therefore, there is a high demand for good observation for slaughter hygiene and implementation of routine surveillance in the poultry farms and markets.


2019 ◽  
Vol 7 (2) ◽  
pp. 37-43 ◽  
Author(s):  
Zulkar Nain ◽  
Md. Ariful Islam ◽  
Mohammad Minnatul Karim

Background: Biofilm is a surface adhered extracellular polymer matrix produced by bacteria. The establishment of biofilms is considered as an important pathogenic trait in many chronic infections and antibiotic resistance. Objective: The present study was intended to evaluate biofilm forming potency and antibiotic resistance (AR) pattern in clinical and non-clinical bacterial isolates, and their phylogenetic characterization. Materials and Methods: A total of 82 bacterial isolates were obtained from clinical settings and animal farms from southern (Kushtia-Jhenaidah) region of Bangladesh. Biofilm forming potentials and AR profile were evaluated by standard biofilm assay and Kirby-Bauer disk diffusion method, respectively. Further, antibiotic exposure was assessed by multiple antibiotic resistance (MAR) value indexing. Furthermore, statistical methods were applied to estimate the relationship between AR and biofilm formation. Finally, selected isolates were characterized by morphological and biochemical tests, as well as 16S rRNA gene sequencing. Results: Clinical isolates showed higher biofilm formation (OD595=1.17±0.03) than non-clinical isolates (OD595=0.68±0.03). Among all, Pseudomonas isolates produced the highest amount of biofilms (OD595=2.08±0.02). The AR profiles fell within 46.67-86.67% and MAR index ranged from 0.47 to 0.87. Moreover, a significant positive correlation (P<0.05) was found between biofilm formation and AR. Eventually, heavy biofilm producers with ≥60% resistance profile were characterized and identified as Escherichia coli, Cronobacter sakazakii, Pseudomonas aeruginosa, Staphylococcus sciuri, and Staphylococcus aureus. Conclusion: In general, biofilm formation and MAR were highly correlated regardless of the source, type, and environment of the isolates. Therefore, a rigorous evaluation of both biofilm formation and AR is demanded to minimize AR and associated problems.


Author(s):  
H. F. Massawe ◽  
R. H. Mdegela ◽  
L. R. Kurwijila

Aim: The study determined and evaluated the prevalence and antibiotic resistance of Staphylococcus aureus isolated from milk collected along the milk value chain from farm herds, milk collection center, and milk shops in Mbeya rural and Mbozi districts, Tanzania. Materials and Methods: A total of 150 milk samples were collected; 96 from farmers' herds, 18 from milk collection centers, and 36 from milk shops. The samples were cultured in Mannitol salt agar for pathogen isolation and biochemical tests performed for confirmation of S. aureus. Kirby-Bauer disk diffusion method was employed for antibiotic resistance testing. Results: One hundred and forty samples yielded Staphylococcus species; these were from farmer's herd (92), milk collection center (18), and milk shops (30), respectively. Biochemical tests showed that 21 (15%) were positive for S. aureus. The corresponding prevalence rates from the value chain nodes were 14.1%, 16.7%, and 16.7%, respectively. Resistance to penicillin was frequently observed (57.1%) and vancomycin was sensitive to all S. aureus isolates tested. Resistance along the sampling points showed a significant positive correlation (r=0.82, p<0.0001; r=0.65, p<0.003; and r=0.61, p<0.01) between farmers, milk collection points, and milk shops, respectively. More than half (57.1%) of the isolates exhibited resistance to three or more of the antibiotics used in this study. S. aureus isolates were shown to have a multiple antimicrobial resistance patterns, particularly with respect to penicillin, ampicillin, erythromycin, and tetracycline. Conclusion: The level of staphylococcal isolates and the antibiotic resistance of S. aureus found in this study is an indication of subclinical mastitis, poor hygiene, and inappropriate use of antibiotics; therefore, education of farmers on subclinical mastitis control and proper use of antibiotics would be of benefits in these areas.


Author(s):  
Salwa Nurhasanah ◽  
Edy Fachrial ◽  
Nyoman Ehrich Lister

Aims: This study aims to isolate and identify the indigenous bacteria of almonds fermentation. Methods: Characterization of the indigeneous bacteria are using gram staining, biochemical tests, 16SrRNA gene sequencing, and the antimicrobial activity against Escherichia coli bacteria. Results: Approximately 28 x 106 CFU / mL bacteria were obtained from almonds fermentations with 14 isolates from enrichment results. Three randomly selected isolates were gram-positive rod-shaped with a negative catalase and positive fermentation test. However, one isolate showed positive results on the motility test. The antimicrobial test results from the three randomly selected isolates using the disk diffusion method obtained inhibition zones of 7 mm, 6.7 mm, and 7 mm, respectively. Therefore, by using 16S rRNA gene sequencing, three different microorganisms were found, namely Bacillus subtilis strain IAM 12118, Bacillus Piscis strain 16MFT21, and Bacillus licheniformis strain BaDB27. Conclusion: It was found that Bacillus subtilis strain IAM 12118, Bacillus Piscis strain 16MFT21, and Bacillus licheniformis strain BaDB27 in almonds fermentation and also can be used as probiotic bacteria.


2019 ◽  
Vol 63 (3) ◽  
pp. 1-8
Author(s):  
M. Sciberras ◽  
M. Pipová ◽  
I. Regecová ◽  
P. Jevinová ◽  
S. Demjanová

Abstract The purpose of this study was to detect the antibiotic resistance of forty-one Escherichia coli isolates from the intestinal contents of slaughtered broiler chickens using the disk diffusion method according to Kirby-Bauer. Mueller-Hinton agar plates were inoculated with 0.1 ml overnight broth cultures of individual E. coli isolates and the disks with the following concentrations of antibiotics were applied onto them: ampicillin (10 μg), cefotaxime (30 μg), gentamicin (10 μg), streptomycin (10 μg), azithromycin (15 μg), tetracycline (30 μg), ciprofloxacin (30 μg) and levofloxacin (3 μg). After the incubation at 37 °C for 16—18 hours, the inhibition zones were measured and interpreted in accordance with the Clinical and Laboratory Standard Institute (CLSI) zone diameter breakpoints. Almost all E. coli isolates showed resistance to tetracycline (92.68 %), most of them were resistant to gentamicin (75.61 %) and levofloxacine (70.73 %). Phenotypic resistance to tetracycline was further confirmed with the help of the Polymerase Chain Reaction (PCR) procedure focused on the presence of specific tet(A) and tet(B) genes. These genes were detected in all 41 E. coli isolates. On the contrary, E. coli isolates were highly susceptible to both azithromycin and streptomycin. In conclusion, the study highlighted the role of commensal E. coli bacteria isolated from the intestines of broiler chickens as an important reservoir of tetracycline resistance genes.


2021 ◽  
Author(s):  
Mohammed Allami ◽  
Masoumeh Bahreini ◽  
Mohammad Reza Sharifmoghadam

Abstract Of the most common infectious diseases that occur mainly by uropathogenic Escherichia coli (UPEC) is urinary tract infections (UTIs). The purpose of this study was to investigate virulence factors, antibiotic resistance, and phylogenetic groups among UPEC strains isolated from patients with UTI in southern Iraq. A total of 100 UPEC isolates were collected from urine samples of UTI patients from various hospitals in southern Iraq, and confirmed by morphological and biochemical tests. Antimicrobial susceptibility testing on isolates was performed by disk diffusion method. Multiplex PCR technique was used to evaluate the phylogenetic groups and the presence of six virulence factor genes; type 1 fimbria (fimH), A-fimbrial adhesion (afa), hemolysin (hly), fimbrial adhesins P (papC), cytotoxic necrosis factor 1 (cnf1), and aerobactin (aer). The majority of isolates belonged to the phylogenetic groups of B2 (55%) and D (32%). The most prevalent virulence factors were fimH (96%), followed by aer (47%), papC (36%), cnf1 (17%), hly (15%), and afa (8%). Phenotypic testing showed that the isolates were most resistant to piperacillin, ticarcillin, amoxicillin/clavulanic acid (92%, 91%, and 88%, respectively) and most sensitive to amikacin and imipenem, respectively. The maximum antibiotic resistance and virulence factors were observed in the phylogenetic group B2. The results showed that the UPEC isolates had all six virulence factors with high frequency and the highest drug resistance. Besides, the results showed a direct relationship between virulence factors, gene diversity, phylogenetic background, and antimicrobial resistance in the UPEC isolates.


Author(s):  
Erva Rakici ◽  
Abdullah Altunisik ◽  
Kazim Sahin ◽  
Osman Birol Ozgumus

Abstract The aim of this study was to evaluate the prevalence and types of antimicrobial resistance among Gram-negative enteric bacteria isolated from Pelophylax sp. Fifty-four frogs were collected from six provinces in the Eastern Black Sea Region of Turkey. In the cloacal swab cultures, bacteria from 160 different colonies were identified by biochemical tests, automated systems, and matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The antimicrobial susceptibility tests were performed by the disk diffusion method. The observed drug resistance rate was the highest to ampicillin and cefazolin, while the lowest against ciprofloxacin and tetracycline. In the molecular assays, bla TEM (8 Citrobacter spp.), bla SHV (2 Escherichia coli, 1 Hafnia alvei, and a Serratia liquefaciens), tetA genes (E. coli and Klebsiella spp.) and a class 1 integron without any gene cassette (E. coli) were detected. Among the strains, no plasmid-mediated quinolone resistance [qnrA, qnrB, qnrS, qepA and aac (6 ′)-Ib-cr] was found. However, two of three quinolone-resistant Klebsiella strains showed the novel amino acid substitution in the gyrA gene resulting in Ser83Asp and Asp87Glu.The clonality between E. coli isolates was also examined by pulsed-field gel electrophoresis. We consider that multidrug-resistant Gram-negative enteric bacteria in the intestinal microbiota of a cosmopolitan frog species might be a reservoir for antibiotic resistance genes.


2021 ◽  
pp. 3216-3223
Author(s):  
Thuan K. Nguyen ◽  
Lam T. Nguyen ◽  
Trang T. H. Chau ◽  
Tam T. Nguyen ◽  
Bich N. Tran ◽  
...  

Background and Aim: Salmonella is one of the leading causes of zoonotic and foodborne infectious outbreaks in humans and poultry and its associated environment is a potential reservoir of Salmonella. In recent years, the antibiotic resistance of bacteria, including Salmonella, has been increasing. This study aimed to investigate the prevalence and antibiotic resistance of Salmonella isolated from poultry, its environment, and the pest animals found at poultry farms and households of the Mekong Delta, Vietnam. Materials and Methods: A total of 3,055 samples were collected from the broiler farms and households of the Mekong Delta from 2017 to 2020. Salmonella was isolated using conventional methods (culturing on selective agar – BPLS and biochemical test) and the isolates were examined for antibiotic resistance against 14 antibiotics using the disk diffusion method. Results: Salmonella was isolated from 181 samples (5.92%), which included chicken feces (7.67%), pest animals (5.98%), and environmental samples (4.33%). The environmental samples comprised bedding (5.88%), feed (5.48%), and drinking water (0.70%). The prevalence of Salmonella was the highest in rats (15.63%) and geckos (12.25%) followed by ants (2.83%) and cockroaches (2.44%); however, Salmonella was not isolated from any fly species. Most of the isolates exhibited resistance to 1-9 antibiotics. The isolates were relatively resistant to chloramphenicol (62.98%), tetracycline (55.80%), ampicillin (54.14%), and sulfamethoxazole/trimethoprim (53.04%). Sixty-two multiple resistance patterns were found in the isolates, with ampicillin-cefuroxime-chloramphenicol-tetracycline- sulfamethoxazole/trimethoprim being the most frequent (7.18%). Conclusion: The chickens, husbandry environment, and pest animals at poultry farms and households were found to be important Salmonella sources in the Mekong Delta. Salmonella isolates from these sources also exhibited a wide-ranging resistance to antibiotics as well as several resistance patterns. Hence, biosecurity should be addressed in poultry farms and households to prevent cross-contamination and reduce the spread of Salmonella infections.


2019 ◽  
Vol 13 (03) ◽  
pp. 195-203 ◽  
Author(s):  
Zahid Hayat Mahmud ◽  
Farozaan Fatima Shirazi ◽  
Muhammad Riadul Haque Hossainey ◽  
Mohammad Imtiazul Islam ◽  
Mir Alvee Ahmed ◽  
...  

Introduction: In Bangladesh, human sludge from dry pit latrines is commonly applied directly to agricultural lands as manure. This study was conducted to investigate the presence of antibiotic resistance, virulence factors and plasmid contents of E. coli strains isolated from sludge samples. Methodology: E. coli were isolated from human feces from closed pit latrines and identified by culture method. Antibiotic susceptibility patterns of the isolates were determined by Standard Kirby-Bauer disk diffusion method. Pathogenic genes and antibiotic resistance genes of ESBL producing isolates were determined by PCR assay. Results: Of the 34 samples tested, 76.5% contained E. coli. Of 72 E. coli isolates, 76.4% were resistant to at least one of the 12 antibiotics tested and 47.2% isolates were resistant to three or four classes of antibiotics. Around 18% isolates were extended spectrum β- lactamase producing and of them 6 were positive for blaTEM specific gene, 4 for blaCTX-M gene, 1 for blaOXA gene and 2 for both blaTEM and blaCTX-M genes. Moreover, among 72 isolates, 4.2% carried virulence genes of enterotoxigenic E. coli; two isolates were positive for st and one was positive for both st and lt genes. In addition, 59.7% of the isolates contained plasmids (range 1.4 to 140 MDa) of which 19.5% isolates contained a single plasmid and 40.2% contained multiple plasmids. Conclusions: The presence of pathogenic, drug resistant E. coli in human sludge necessitates a regular surveillance before using as a biofertilizer.


2020 ◽  
Vol 5 (4) ◽  
pp. 125-130
Author(s):  
Aidin Azizpour ◽  
Ciamak Ghazaei

Introduction: Colibacillosis is one of the most important bacterial diseases of birds that is caused by Escherichia coli. This disease causes considerable economic damage to the poultry industry every year. Various antimicrobial agents are used to reduce the damage caused by this infection. But in recent decades, the increased use of antibiotics has led to the development of resistant genes and, consequently increasing antibiotic resistance of bacteria, leading to a decrease in the efficacy of antibiotics. The purpose of this study was to determine the susceptibility and drug resistance of 178 isolates of 40 chicken flocks in Ardabil province northwest of Iran. Methods: Five carcasses were randomly selected from each flocks with colibacillosis and sampled from liver and heart using sterile swabs. After culture and isolation, colonies were identified by biochemical and serological methods. Antibiotic resistance of all isolates to 19 antibiotics was determined using disk diffusion method based on CLSI guidelines. Results: Of 200 samples, 178 (89%) were isolated, and 22 (11%) did not grow. In this study the highest antibiotic resistance was observed against flumequine (98.31%), nalidixic acid (97.25%), tylosin (97.20%), oxytetracycline (97.20%), chlortetracycline (95.50%), difloxacin (89.32%), doxycycline (81.47%), enrofloxacin (77.53%), sulfamethoxazole + trimethoprim (71.91%), and the lowest antibiotic resistance was recorded for Linco-Spectin (36.52%), chloramphenicol (22.47%), gentamycin (7.30%), fuzbac (5.05%) and ceftriaxone (3.93%). All isolates were highly sensitive to ceftazidime. Conclusion: The results of this study showed a high level of resistance to antibiotics commonly used in poultry industry, which is probably due to improper use of antibiotics in poultries.


Sign in / Sign up

Export Citation Format

Share Document