scholarly journals Chinas Growth in Residential Solar Roof Tops-A Booster for India

Author(s):  
Kausar Suraiya Quraishi ◽  
Dr. Salmaahmed ◽  
Dr. K. Maran

China is the world’s largest producer of photovoltaic -PV power with total installed solar capacity surpassing the early leaders in solar energy developed countries viz;USA, Germany, Japan,Italy,France, and UK.The electricity consumption of China exceeds that of any other nation and China is also the top-most solar producer with fast- growing PV systems. This paper focuses on Residential Solar PV and the progress made by China-its evolution of solar policies,trends, challenges overcome, progress made and the future of sustainable solar energy development envisaged by China.A comparison of the trajectory of growth in Residential Solar PVs in India is made to analyze the concrete government policies in this segment and the consistency and growth of RSTPV in India. The challenges faced by India and the reasons for slow growth in this sector are explored.The time is now ripe for India to focus on the RSTPV segment while implementing the Jawaharlal Nehru National Solar Mission(JNNSM) and learning lessons from China’s experiences to become a global PV leader in harnessing solar energy.


2021 ◽  
Author(s):  
Leroy Walston ◽  
Heidi Hartmann

<p>Concomitant with the increase in solar photovoltaic (PV) energy development over the past decade has been the increasing emphasis on land sharing strategies that maximize the land use efficiency of solar energy developments.  Many of these strategies focus on improving the compatibility of solar energy development with other co-located land uses (e.g., agriculture) and by improving several ecosystem services that could have natural, societal, and industrial benefits. One such land opportunity is the restoration and management of native grassland vegetation beneath ground-mounted PV solar energy facilities, which has the potential to restore native habitat to conserve biodiversity and restore previously altered ecosystem services (e.g., natural pollination services). This presentation will discuss various assessment and modeling approaches to evaluate the scale and magnitude of the ecosystem services provided by different vegetation management strategies at solar PV energy development sites. This work demonstrates how multifunctional land uses in energy systems represents a win-win solution for energy and the environment by optimizing energy-food-ecology synergies. This work was conducted by Argonne National Laboratory for the U.S. Department of Energy Solar Energy Technologies Office under Contract No. DE-AC02-06CH11357.</p>



2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sambu Kanteh Sakiliba ◽  
Abubakar Sani Hassan ◽  
Jianzhong Wu ◽  
Edward Saja Sanneh ◽  
Sul Ademi

The focus of this paper is the design and implementation of solar PV deployment option, which is economical and easy to maintain for remote locations in less developed countries in Sub-Saharan Africa. The feasibility of stand-alone solar PV systems as a solution to the unstable electricity supply and as an alternative to the conventional resource, “diesel generators,” is presented. Moreover, a design of a system is carried out, such that the electrical demand and site meteorological data of a typical household in the capital, Banjul, is simulated. Likewise, the life cycle cost analysis to assess the economic viability of the system, along with the solar home performance, is also presented. Such system will be beneficial to the inhabitants of Gambia by ensuring savings in fuel costs and by reducing carbon emissions produced by generators. The selection of appropriate-sized components is crucial, as they affect the lifetime, reliability, and initial costs. The design presented in this study represents a solution for domestic houses to adopt the system according to the location and environment, in order to meet electricity demand.



2021 ◽  
Author(s):  
Annie Chow

Alternative sources of energy are being sought after in the world today, as the availability of fossil fuels and other non-renewable resources are declining. Solar energy offers a promising solution to this search as it is a less polluting renewable energy resource and can be easily converted into electricity through the usage of photovoltaic systems. This thesis focuses on the modeling of urban solar energy with high spatiotemporal resolution. A methodology was developed to estimate hourly solar PV electricity generation potential on rooftops in an urban environment using a 3-D model. A case study area of Ryerson University, Toronto was chosen and the incident solar radiation upon each building rooftop was calculated using a software tool called Ecotect Analysis 2011. Secondly, orthophotos of the case study area were digitized using Geographic Information Systems in order to eliminate undesirable rooftop objects within the model. Lastly, a software tool called HOMER was used to generate hourly solar PV electricity estimates using the values generated by the other two software tools as input parameters. It was found that hourly solar PV output followed the pattern of a binomial curve and that peak solar generation times coincided with summer peak electricity consumption hours in Ontario.



Author(s):  
Ramzi Alahmadi ◽  
◽  
Kamel Almutairi ◽  

With the increasing global concerns about greenhouse gas emissions caused by the extensive use of fossil fuels, many countries are investing in the deployment of clean energy sources. The utilization of abundant solar energy is one of the fastest growing deployed renewable sources due its technological maturity and economic competitivity. In addition to report from the National Renewable Energy Laboratory (NREL), many studies have suggested that the maturity of solar energy systems will continue to develop, which will increase their economic viability. The focus of analysis in this paper is countries with hot desert climates since they are the best candidates for solar energy systems. The capital of Saudi Arabia, Riyadh is used as the case study due to the country’s ambitious goals in this field. The main purpose of this study is to comprehensively analyze the stochastic behavior and probabilistic distribution of solar irradiance in order to accurately estimate the expected power output of solar systems. A solar Photovoltaic (PV) module is used for the analysis due to its practicality and widespread use in utility-scale projects. In addition to the use of a break-even analysis to estimate the economic viability of solar PV systems in hot desert climates, this paper estimates the indifference point at which the economic feasibility of solar PV systems is justified, compared with the fossil-based systems. The numerical results show that the break-even point of installing one KW generation capacity of a solar PV system is estimated to pay off after producing 16,827 KWh, compared to 15,422 KWh for the case of fossil-based systems. However, the increased cost of initial investment in solar PV systems deployment starts to be economically justified after producing 41,437 KWh.



2021 ◽  
Vol 10 (3) ◽  
pp. 125-139
Author(s):  
Mochammad Donny Anggoro ◽  
Diana Siregar ◽  
Regina Ninggar ◽  
Satriyo Wicaksono ◽  
Soo Hee Lee

The solar PV systems are semiconductor devices that precisely convert sunlight into electricity, through the transfer of electrons. They provide several advantages, such as high modularity, zero noise, and adequate availability of solar resources in Indonesia. Therefore, this study aims to determine the potency, policy perspective, and Cost-Benefit Analysis (CBA) of the solar energy implementation for electricity generation. A statistical analysis was used for measuring potency, as well as reviewing opportunistic policies and barriers. A review of some CBA-based journals was also carried out, to determine that the development of solar power electricity had more benefit than fossil fuels and LCOE (Levelized Cost Of Electricity). The results of the 10-days average value calculation in 2019 were 388-563 W/m2, with the maximum values at 1137-1604 W/m2. Meanwhile the analysis of the maximum hourly averages for Western, Central, and Eastern Indonesia were 570-719, 634-758, and 559-627 W/m2 at 11.00-12.00 WIB, 11.00-13.00 WITA, and 12.00-13.00 WIT, respectively. The potency of solar radiation intensity in Indonesia was averagely 150-750 W/m2, as the highest values were found in East Nusa Tenggara, Maluku, and Merauke.



2021 ◽  
Vol 5 (1) ◽  
pp. 14-21
Author(s):  
Hang Le Thi Thuy ◽  
Dong Ngo Nguyen

Public lighting is an essential service in today’s cities, towns, and highways, including improving public safety and reducing traffic accidents. Public lighting could consume up to 40% of the energy budget of the local governments. Therefore, the technical innovations related to public lighting always bring significant value to municipal governments. In Vietnam, the public lighting in big cities account for 25% of the total power consumption. The solutions to reducing electricity consumption for public lighting are also of interest to domestic and foreign organizations, including the use of on-site energy such as wind and solar energy. In this paper, on the basis of the current state of the public lighting system and the potential of solar energy in Hanoi, the authors have roughly calculated the technical and economic efficiency of power supply solutions using solar energy in public lighting. The proposal of solving the power supply problem, by using solar energy in public lighting in Hanoi is another result of the paper.



Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3172 ◽  
Author(s):  
Xiaoyang Song ◽  
Yaohuan Huang ◽  
Chuanpeng Zhao ◽  
Yuxin Liu ◽  
Yanguo Lu ◽  
...  

Solar energy is the most clean renewable energy source and has good prospects for future sustainable development. Installation of solar photovoltaic (PV) systems on building rooftops has been the most widely applied method for using solar energy resources. In this study, we developed an approach to simulate the monthly and annual solar radiation on rooftops at an hourly time step to estimate the solar PV potential, based on rooftop feature retrieval from remote sensing images. The rooftop features included 2D rooftop outlines and 3D rooftop parameters retrieved from high-resolution remote sensing image data (obtained from Google Maps) and digital surface model (DSM, generated from the Pleiades satellite), respectively. We developed the building features calculation method for five rooftop types: flat rooftops, shed rooftops, hipped rooftops, gable rooftops and mansard rooftops. The parameters of the PV modules derived from the building features were then combined with solar radiation data to evaluate solar photovoltaic potential. The proposed method was applied in the Chao Yang District of Beijing, China. The results were that the number of rooftops available for PV systems was 743, the available rooftop area was 678,805 m2, and the annual PV electricity potential was 63.78 GWh/year in the study area, which has great solar PV potential. The method to perform precise calculation of specific rooftop solar PV potential developed in this study will guide the formulation of energy policy for solar PV in the future.



2021 ◽  
Author(s):  
Annie Chow

Alternative sources of energy are being sought after in the world today, as the availability of fossil fuels and other non-renewable resources are declining. Solar energy offers a promising solution to this search as it is a less polluting renewable energy resource and can be easily converted into electricity through the usage of photovoltaic systems. This thesis focuses on the modeling of urban solar energy with high spatiotemporal resolution. A methodology was developed to estimate hourly solar PV electricity generation potential on rooftops in an urban environment using a 3-D model. A case study area of Ryerson University, Toronto was chosen and the incident solar radiation upon each building rooftop was calculated using a software tool called Ecotect Analysis 2011. Secondly, orthophotos of the case study area were digitized using Geographic Information Systems in order to eliminate undesirable rooftop objects within the model. Lastly, a software tool called HOMER was used to generate hourly solar PV electricity estimates using the values generated by the other two software tools as input parameters. It was found that hourly solar PV output followed the pattern of a binomial curve and that peak solar generation times coincided with summer peak electricity consumption hours in Ontario.



2021 ◽  
Vol 335 ◽  
pp. 02001
Author(s):  
Shun Seng Chan ◽  
Chockalingam Aravind Vaithilingam ◽  
Gowthamraj Rajendran

Solar energy is a renewable energy abundant throughout the year in a tropical weather country like Malaysia. This paper investigates the viability of using solar PV systems as a cost-saving measure to supply electricity for Taylor’s University (TU) daily energy usage. Experimental values were compared with theoretical values and analyzed in this paper. In this experiment, four photovoltaic (PV) panels connected in parallel were linked to a maximum power point tracking (MPPT) charge controller acting as a voltage regulator. A lead-acid battery was also coupled to the controller that acts as an energy storage to store the harvested solar energy from PV panels and discharge it in electricity. Temperature sensors connected to an Arduino UNO were placed at different locations on the solar panels to monitor for irregularities in the temperature of the panels. The amount of electricity produced was calculated using the data obtained. The results showed that using a larger PV system will generate much more electricity and create a high return on investment (ROI) if the solar panels absorbed sunlight under good weather conditions, thus bringing forward a potential solution to reduce TU’s electricity consumption.



Clean Energy ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 423-432
Author(s):  
Rakesh Dalal ◽  
Kamal Bansal ◽  
Sapan Thapar

Abstract The residential-building sector in India consumes >25% of the total electricity and is the third-largest consumer of electricity; consumption increased by 26% between 2014 and 2017. India has introduced a star-labelling programme for residential buildings that is applicable for all single- and multiple-dwelling units in the country for residential purposes. The Energy Performance Index (EPI) of a building (annual energy consumption in kilowatt-hours per square metre of the building) is taken as an indicator for awarding the star label for residential buildings. For gauging the EPI status of existing buildings, the electricity consumption of residential buildings (in kWh/m2/year) is established through a case study of the residential society. Two years of electricity bills are collected for an Indian residential society located in Palam, Delhi, analysed and benchmarked with the Indian residential star-labelling programme. A wide EPI gap is observed for existing buildings for five-star energy labels. Based on existing electricity tariffs, the energy consumption of residential consumers and the Bureau of Energy Efficiency (BEE)’s proposed building ENERGY STAR labelling, a grid-integrated rooftop solar photovoltaic (PV) system is considered for achieving a higher star label. This research study establishes the potential of grid-connected rooftop solar PV systems for residential buildings in Indian cities through a case study of Delhi. Techno-economic analysis of a grid-integrated 3-kWp rooftop solar PV plant is analysed by using RETScreen software. The study establishes that an additional two stars can be achieved by existing buildings by using a grid-integrated rooftop solar PV plant. Payback for retrofit of a 3-kWp rooftop solar PV plant for Indian cites varies from 3 to 7 years. A case study in Delhi, India establishes the potential of grid-connected rooftop solar PV systems for residential buildings. Techno-economic analysis of grid integrated, 3 kWp rooftop solar systems estimates a payback period from 3 to 7 years.



Sign in / Sign up

Export Citation Format

Share Document