scholarly journals GSM Based Water Quality Monitoring System Using Arduino

Author(s):  
S Gokulanathan ◽  
P Manivasagam ◽  
N Prabu ◽  
T Venkatesh

This paper investigates about water quality monitoring system through a wireless sensor network. Due to the rapid development and urbanization, the quality of water is getting degrade over year by year, and it leads to water-borne diseases, and it creates a bad impact. Water plays a vital role in our human society and India 65% of the drinking water comes from underground sources, so it is mandatory to check the quality of the water. In this model used to test the water samples and through the data it analyses the quality of the water. This paper delivers a power efficient, effective solution in the domain of water quality monitoring it also provides an alarm to a remote user, if there is any deviation of water quality parameters.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Prasad M. Pujar ◽  
Harish H. Kenchannavar ◽  
Raviraj M. Kulkarni ◽  
Umakant P. Kulkarni

AbstractIn this paper, an attempt has been made to develop a statistical model based on Internet of Things (IoT) for water quality analysis of river Krishna using different water quality parameters such as pH, conductivity, dissolved oxygen, temperature, biochemical oxygen demand, total dissolved solids and conductivity. These parameters are very important to assess the water quality of the river. The water quality data were collected from six stations of river Krishna in the state of Karnataka. River Krishna is the fourth largest river in India with approximately 1400 km of length and flows from its origin toward Bay of Bengal. In our study, we have considered only stretch of river Krishna flowing in state of Karnataka, i.e., length of about 483 km. In recent years, the mineral-rich river basin is subjected to rapid industrialization, thus polluting the river basin. The river water is bound to get polluted from various pollutants such as the urban waste water, agricultural waste and industrial waste, thus making it unusable for anthropogenic activities. The traditional manual technique that is under use is a very slow process. It requires staff to collect the water samples from the site and take them to the laboratory and then perform the analysis on various water parameters which is costly and time-consuming process. The timely information about water quality is thus unavailable to the people in the river basin area. This creates a perfect opportunity for swift real-time water quality check through analysis of water samples collected from the river Krishna. IoT is one of the ways with which real-time monitoring of water quality of river Krishna can be done in quick time. In this paper, we have emphasized on IoT-based water quality monitoring by applying the statistical analysis for the data collected from the river Krishna. One-way analysis of variance (ANOVA) and two-way ANOVA were applied for the data collected, and found that one-way ANOVA was more effective in carrying out water quality analysis. The hypotheses that are drawn using ANOVA were used for water quality analysis. Further, these analyses can be used to train the IoT system so that it can take the decision whenever there is abnormal change in the reading of any of the water quality parameters.


2021 ◽  
Vol 271 ◽  
pp. 02009
Author(s):  
Tan Fenfang

Water is the source of human life. However, a large amount of domestic sewage, industrial wastewater and agricultural wastewater produced in human production and life pollute the surface water, threatening normal production and life of people.In order to grasp the water quality fully, the temperature, PH. turbidity and conductivity sensors are adopted to collect various water quality parameters, and necessary software and hardware design of the on-line water quality' monitoring system is completed to provide a basis for subsequent water quality monitoring in various industries.


2013 ◽  
Vol 738 ◽  
pp. 239-242 ◽  
Author(s):  
Shi Wei Lin ◽  
Yu Wen Zhai

The method of water quality monitoring applied by reservoirs is sampling in the scene and analyzing at the laboratory at present. Based on analyzing key problem of water quality monitoring, automatic water quality monitoring system based on GPRS is provided in this paper. The system structure and principle are introduced. The system collects, transmits and processes water quality parameters automatically, so the production efficiency and the economy benefit are improved greatly.


Author(s):  
G. Vadivel ◽  
A. P. Thangamuthu ◽  
A. Priyadharshini

The decrease in quality of water resources has become a common problem. The standard methods of water quality surveillance include water sample manual collection from various locations. These water samples were tested in laboratory using intelligence capabilities. Such approaches take time and are no longer considered inefficient. The old method of water quality detection was time consuming, less accurate and expensive. By focusing on the above problems, IOT can be used to monitor water quality in real time, a low cost water quality monitoring system. Water quality parameters in the proposed system are measured by various sensors such as pH, temperature and dissolved oxygen to transfer data on a platform via a microcontroller system. Therefore, to meet these needs, you can use other technologies such as MQTT (Message Sorting Delimiter Transform), allowing the Sensor and End device rankings to publish and subscribe. And the number of data simultaneously between sensors and servers with the help of the MQTT algorithm.


Monitoring the quality of water and its proper management is crucial for any industrial and economic application. The global shortage of water demands a sustainable solution to optimize its usage. The Internet of Things provides a robust and cost-effective solution for real-time monitoring of various parameters of water. The paper aims to implementan intelligent water quality monitoring system with the aid of IoT. The proposed system was successfully implemented to determine the turbidity, TDS, flow rate and the level of water for a given sample. The data obtained from the sensors are uploaded to the ThingSpeak dashboard for online monitoring purpose. Besides, an SMS alert is sent to the user whenever the turbidity and TDS values have crossed the threshold limit defined for good quality water.


Author(s):  
Nor Azlan Othman ◽  
Nor Salwa Damanhuri ◽  
Mohamad Amirul Syafiq Mazalan ◽  
Sarah Addayani Shamsuddin ◽  
Mohd Hussaini Abbas ◽  
...  

<p>Maintaining the quality of the water quality is one of the important aspects that play a substantial effect on the aquaculture industry especially in the tilapia industry. The quality of the water needs to be continuously monitored as any deviation from the allowed critical parameters such as water temperature and potential of hydrogen (pH) can cause unwanted scenarios such as disease, stress, higher mortality rate and profit loss. Currently, the monitoring process adopted by most fish breeders is done manually by using a portable sensor. This approach is found to be very tedious, ineffective use of manpower and time consuming particularly for the large-scale aquaculture industry. Hence, this research focuses on developing a simple, low-cost automated water quality monitoring system for the tilapia industry via LabVIEW software. The developed system will be able to monitor the parameter in real-time continuously with the capability of record and analyze each reading in a more efficient way. A data acquisition (DAQ) of NI myRIO-1900 is used as an interface between sensors and a monitoring station equipped with LabVIEW. Additionally, the developed system is equipped with an alarm system to alert the user when any deviation of the parameters occurs. Result shows that the system has a small range of average relative error of 4.28% and 6.22% for temperature and pH level respectively as compare to the portable sensor. Note that the errors are down to the selection of sensors. Furthermore, the developed prototype of the monitoring system has advantages in terms of its flexibility in extending the system with more sensors and allows a longer period of data collection without human intervention. The system is also upgradable with the integration of a control element to control the parameter when the monitored parameter is exceeded the threshold value. Succinctly, the system offers lots of advantages to the aquaculture industries with further improvement leads to better performance.</p>


Author(s):  
MD. Reza Ranjbar ◽  
Aisha H. Abdalla

<p>Due to the vast increase in global industrial output, rural to urban drift and the over-utilization of land and sea resources, the quality of water available to people has deteriorated greatly. Before the sensor based approach to water quality monitoring, water quality was tested by collecting the samples of water and experimentally analyzing it in the laboratories. However, in today, with time being a scarce resource, the traditional method of water quality testing is not efficient anymore. To tackle this issue, several electronic (microcontroller and sensor based) water quality monitoring systems were developed in the past decade. However, an in depth study of this current water quality testing technology shows that there are some limitations that should be taken into consideration. Therefore, an automatic, remote, and low cost water quality monitoring system has been developed. This system consists of a core microcontroller, multiple sensors, GSM module, LCD display screen, and an alarm subsystem. The quality of water is read from the physical world through the water quality testing sensors and sent to the microcontroller. The data is then analyzed by the microcontroller and the result is displayed on the LCD screen on the device. At the same time, another copy of the sensor readings is sent remotely to the user’s mobile phone in the form of SMS. If an abnormal water quality parameter is detected by any sensor, the alarm system will turn on the respective red LED for that parameter and the buzzer will give warning sound. At the same time, the abnormality of the water parameter is reported to the user through SMS. The system is aimed to be used for wide applications and by all categories of users. It can facilitate the process of water quality monitoring autonomously and with low cost; to help people improve their quality of drinking water, household water supplies and aquaculture farms, especially in rural areas where residents do not have access to standardized water supply and suffer from different diseases caused by contaminated water.</p>


2020 ◽  
Vol 165 ◽  
pp. 03060
Author(s):  
Fan Heng

The water quality monitoring system proposed in this paper is to establish a monitoring system by using the ZigBee technology .The sensor nodes are placed in the monitoring area to form a tree-type network topology, and the data of the water quality parameters (including PH value, turbidity, water temperature, electric conductivity, etc.) are collected and analyzed. This paper mainly expounds the construction of the hardware system of the monitoring system, establishes the test model of the hardware system, simulates the placement of the sensor node to obtain the experimental data, and provides the hardware test result for the overall system design.


Author(s):  
Zulkhairi Mohd Yusof ◽  
Md Masum Billah ◽  
Kushsairy Kadir

<p>There is huge number of disease which is caused through water drinking that being polluted was supplied to the consumer. This is something that cannot be underestimate because it can cause high cost of treatment or death. Its not only cause troubles to the consumer which is human, it is also included all aquatic life and surrounding ecosystem. There is way to overcome this problem that created before which is take the sample of water to the lab. The result of water being polluted or not will be released by the lab. But this system going to take lot of times because there are few process that should be followed. This system is not suitable anymore because it is not portable, easy and fastest. It should be upgraded to the IoT system because it can cut times, internet base and people will be more alert to the quality of water. Therefore, a real-time water quality monitoring system is proposed in this research to reduce number of fatality happened from water.</p>


Sign in / Sign up

Export Citation Format

Share Document