scholarly journals Pengaruh Limbah Beton sebagai Pengganti Agregat Kasar terhadap Kuat Tekan Beton

2021 ◽  
pp. 34-40
Author(s):  
Maulana Ishaq ◽  
Rita Nasmirayanti ◽  
Asri Yuda Trinanda

Concrete is the main material factor in a construction project field that is often used, because concrete has a high compressive strength value so it is very useful for structural buildings to withstand axial forces or compressive forces on the building itself where the structure can be used. for the long term. However, along with the increase in construction development in Indonesia, it has a negative impact on the environment around the construction site because with the rampant construction of this building it will trigger environmental pollution due to the remaining concrete waste from the construction project. On this basis, it encourages the author to conduct research by utilizing waste concrete as a substitute for coarse aggregate for the compressive strength of concrete, by reusing the concrete waste will increase the life of the material from the waste itself. In this study, the materials used were tested first, such as; cement density, silt content, water content, specific gravity absorption, wear testing and sieve analysis on aggregates. Then for the concrete mixture using concrete waste with variations of 0%, 25%, 50%, 75% and 100% of the total weight of coarse aggregate. In this study, the compressive strength at the age of 21 days with a mixture of 0%, 25%, 50%, 75%, and 100% concrete had a compressive strength of 200.92 kg/cm2, 188.83 kg/cm2, 206, respectively. 96 kg/cm2, 177.50 kg/cm2, and 179.01 kg/cm2. Then experienced an average shrinkage of 9.53 kg/cm2 at the age of 28 days. The optimum compressive strength is at 50% mixed variation, with a value of 206.96 kg/cm2 because it has an increase of 3% higher than normal concrete compressive strength with a mixing ratio of 1:2.5:3.5 and a slump value of ±13.25 cm and the dry weight of the concrete is 7.69 kg.

2015 ◽  
Vol 17 (3) ◽  
Author(s):  
Hartono Hartono

Hartono, in this paper explain that to obtain the allowed characteristic compressive strength of concrete from a concrete construction is quite difficult , because it is influenced by the mix of materials used for the manufacture of the construction, in which the require material of the concrete mix had to be in accordance with Reinforced Concrete Indonesia Rule Year 1991. The main factor of mix material that affect permitted the compressive strength of concrete is aggregate characteristics, namely the coarse aggregate or crushed stone. Therefore this study is intended to determine the compressive strength of concrete with the characteristics of coarse aggregate material of crushed stone that comes from limestone. This research use Gresik PC mixture concrete, muntilan sand, and kricak of limestone. To determine concrete compressive characteristics strength of concrete, concrete specimen as many as 20 pieces, with mixed-use PC weight ratio of 1 : 2 Ps : 3, cube molded kricak with the size of 15 cm X 15 cm X 15 cm was made. From these results, it can be obtained that concrete compressive characteristic strength σ 1 bk = 215.41 kg / cm2. Keyword: Concrete construction


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1069 ◽  
Author(s):  
Fahd Saeed Alakbari ◽  
Mysara Eissa Mohyaldinn ◽  
Ali Samer Muhsan ◽  
Nurul Hasan ◽  
Tarek Ganat

The chemical sand consolidation methods involve pumping of chemical materials, like furan resin and silicate non-polymer materials into unconsolidated sandstone formations, in order to minimize sand production with the fluids produced from the hydrocarbon reservoirs. The injected chemical material, predominantly polymer, bonds sand grains together, lead to higher compressive strength of the rock. Hence, less amounts of sand particles are entrained in the produced fluids. However, the effect of this bonding may impose a negative impact on the formation productivity due to the reduction in rock permeability. Therefore, it is always essential to select a chemical material that can provide the highest possible compressive strength with minimum permeability reduction. This review article discusses the chemical materials used for sand consolidation and presents an in-depth evaluation between these materials to serve as a screening tool that can assist in the selection of chemical sand consolidation material, which in turn, helps optimize the sand control performance. The review paper also highlights the progressive improvement in chemical sand consolidation methods, from using different types of polymers to nanoparticles utilization, as well as track the impact of the improvement in sand consolidation efficiency and production performance. Based on this review, the nanoparticle-related martials are highly recommended to be applied as sand consolidation agents, due to their ability to generate acceptable rock strength with insignificant reduction in rock permeability.


Author(s):  
H. Haris

In the current era of globalization, the development of concrete in the construction sector is very rapid, be it housing, offices, bridges, roads, dams, ports, and others. That is inseparable from the use of concrete as a part of building construction. The use of coarse aggregate for concrete mixes, namely natural stone, is a non-renewable natural resource. Therefore an alternative is needed as a substitute. One of the natural resources that can be renewed is hazelnut skin. Candlenut is a traditional plant that has various benefits, one of which is a candlenut shell. In this study, the materials used for standard concrete mixtures consist of water, cement, fine aggregate, and coarse aggregate. The water used for mixing the concrete is taken from the PDAM channel. The results showed that the effect of candlenut shells used as a substitute for some coarse aggregate decreased compressive strength results from the results of standard concrete compressive strength. The results obtained by the value of standard concrete compressive strength at 28 days of concrete were 27.19Mpa for concrete using Candlenut shells of 20% produce a compressive strength value of 17.33 Mpa at 28 days of concrete. 35% produce a concrete compressive strength value of 16.04 Mpa, while 50% produce a concrete compressive strength value of 15.17 Mpa. Thus the research shows that more and more candlenut shells are being used as a substitute for coarse aggregate in the concrete mixture.


Author(s):  
Anjana Ghimire ◽  
Sanjeev Maharjan

An experimental study had been conducted to study the effects of saw dust and EPS as partial replacement of sand and coarse aggregate in various percentages such as 0%, 10%, 20% and 30% in concrete brick samples of M20 and M15 Grade. Compressive strength, Bulk density and Water absorption of prepared saw dust and EPS M20 and M15 concrete brick were determined. The properties of materials were first determined before the conduction of experimental works. The normal consistency, initial and final setting time and compressive strength of cement used for the experiment were found as 31%,115 minutes, 265 minutes and 39.5 N/mm2 respectively. Sieve analysis to determine the particle size distribution of sand, coarse aggregates, saw dust and EPS was performed. From the sieve analysis, the nominal maximum size of sand, coarse aggregate, saw dust and EPS used for preparing concrete brick sample were 2.36 mm, 12.5 mm, 2.36 mm and 4.75 mm respectively. Impact value of coarse aggregate obtained was 11.20 %.The experimental results showed that water absorption of prepared M15 and M20 concrete brick samples increased with increase in percentage replacement of sand by saw dust and EPS by coarse aggregate. Compressive strength and Bulk density of prepared M15 and M20 concrete brick sample decreased with increase in percentage content of saw dust and EPS. The results showed that the partial replacement of sand by saw dust and coarse aggregate by EPS in concrete brick sample had sufficient strength as compared to common bricks.


Author(s):  
Bindhu K.R ◽  
Abiya B ◽  
Hasna Haneef ◽  
Jinu David ◽  
Justin Mathew Joseph

Sustainability is a key in modern construction scenario. Even when the construction industry underwent a revolution in terms of equipment and materials used, the resultant impact on environment skyrocketed. This leads to the adoption of more sustainable approaches in construction like using coconut byproducts such as coconut fibre and shell as additives in concrete. Coconut fibre is abundantly available material which makes it a viable reinforcement material in concrete and the same goes for coconut shell which can be used as a partial replacement for conventional aggregate. This can further act as a new source of income for the coconut producers who get the benefit of the new demand generated by the construction industry. It is also an effective method of disposal of coconut husks and shells and thus reduces their negative impact on the environment. This project aims at studying the variation of strength of coconut fibre reinforced concrete (CFRC) with different percentages of coconut fibre (0.5%, 1%,1.5% and 2% by weight of cement), coconut shell aggregate concrete by replacing coarse aggregate with different percentages of coconut shell ( 15%, 30% and 45%) compared with that of conventional concrete. The optimum percentage of both fibres to be added and coconut shell to be used is determined by analyzing the strength aspects such as flexural, compressive and tensile strength. This project also includes the investigation on the mechanical properties of CFRC with coconut shell aggregate by incorporating coconut fibre and shell together in concrete matrix.


INFO-TEKNIK ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 13
Author(s):  
Yusnimar Yusnimar ◽  
J. N. Rahman ◽  
P. Ningendah

Spent bleaching earth (SBE) is a waste from cooking oil industry. It is categorized as one of the hazardous and toxic materials, because oil residues in it. Generally, SBE is overcome by landfill and it’s sometimes become problems. Basically SBE contains SiO2 and the size of the grain is very fine, almost the same as the fine aggregate of sand used for making brick. In this study, the making of brick used SBE with several variations (2.75% - 27.52%) of the total raw materials used. Brick making methods are based on SNI 03-0348-1989 for raw material ratio, SNI 03-0348-1989 for molding and presshing, SNI 03-6825-2002 for drying and curing. The brick quality was determined based on fineness modulus parameters, dry weight, brick absorption to water and compressive strength. Brick contain SBE 2.75% was produced with molding size of 15cm x 30cm x 9cm, it has an average dry weight of 7.80 kg, compressive strength of 8.95 MPa and absorbing power of 1.26%.


2016 ◽  
Vol 692 ◽  
pp. 17-26 ◽  
Author(s):  
S. Arundhathy ◽  
V. Vasugi

Upcoming infrastructure and maintenance focuses on sustainable infrastructure. To solve this, certain cement – based materials are developed. Engineered Cementitious composite (ECC) has been developed as an improved version of Fiber Reinforced Cement. The most outstanding properties of ECC are its high tensile ductility and fine multiple cracking. It is basically a composite similar to mortar added with fine fibers such as steel fibers and polymer fibers. A composite with high ductility is made retaining the original properties of normal concrete leads to a sustainable and serviceable construction. The materials used for ECC are cement, fly ash, fine cement, admixtures, fibers and water. Sand used in this mix is very fine which have 0.1mm dia. The fibers used in this study are polypropylene and steel fiber. Fibers are added at the rate of 0.5%, 1%, 1.5%, 2% volume of cement. This paper deals with the experimental investigation of compressive strength, tensile strength, and flexural strength of ECC made with polypropylene and a mixed proportion of polypropylene with steel fiber with different volume percentages i.e., 2%, 1.5%, 1% and 0.5%. It is observed that addition of fibers increased the ductile behavior. ECC with polypropylene fiber had shown significant improvement in tensile and flexural strength while ECC with hybrid fiber had given appreciable compressive strength development. These efforts will focus on the development of sustainable green material, which reduces the negative impact of existing concrete on the environment. The potential application of ECC to achieve structural sustainability has been observed from the results obtained.


2018 ◽  
Vol 7 (1) ◽  
pp. 35-42
Author(s):  
Redaksi Tim Jurnal

The purpose of this research is to know whether the influence of bulk aggregate grains influence the targeted compressive strength value, test sample to concrete compressive strength. This research is a quantitative research that starts from the testing of materials used as concrete materials and make the concrete mix design based on the procedure to make normal concrete on SNI 03-2834-2000. The analyzing data using simple statistical method by comparing the average value of compressive strength from various sample forms. From the result of analysis, obtained data from of compressive strength achieved with the bulk of the granular aggregate grains used differently. The coarse aggregate grain also affects the compressive strength value with the greater tendency of coarse aggregate grains used, the greater the compressive strength.


2021 ◽  
Vol 11 (20) ◽  
pp. 9647
Author(s):  
Minqi Hua ◽  
Bo Chen ◽  
Yun Liu ◽  
Hui Liu ◽  
Pinghua Zhu ◽  
...  

Construction and demolition wastes (C&DWs) have raised a large number of ecological and environmental problems. Recycling C&DWs into arecycled concrete aggregate (RCA) will help save natural resources effectively and reduce the negative impact of C&DW on the environment. Innovative pervious concrete (IPC) can mitigate extreme weather disasters, such as rainstorms, and overcome the low strength and poor durability of traditional pervious concrete. In this study, innovative recycled pervious concrete (IRPC) is prepared by combining RCA with IPC, which has broad application prospects and ecological friendliness. This study investigates the effect of RCA quality grades and replacement rates on the mechanical property, permeability, sulfate resistance and abrasion resistance of IRPC. IRPC mixtures were prepared with three different quality grades (high, medium and low qualities) of aggregates named as NA, RCA1 and RCA2. Moreover, the replacement rate of RCA for NA varied as 0%, 25%, 50%, 75% and 100%. The IRPC specimens were tested for compressive strength, mass loss and abrasion resistance after different sulfate wetting-drying cycles of 0, 30 and 60. The results exhibited that the initial compressive strength of all types of IRPC was more than 40 MPa. The compressive strength and mass of most IRPC increased first and then decreased slightly with the passage of a number of sulfate wetting-drying cycles, indicating IRPC has good resistance to sulfate attack. Sulfate attack and the addition of RCA will reduce the abrasion resistance of IRPC. However, when the replacement rate is lower than 50%, and the RCA quality is better (attached mortar content < 25%), the abrasion resistance of IRPC will be improved under sulfate attack. The experimental results might be useful as a reference and design methodology for employing IRPC in pavement applications in the future.


2021 ◽  
Vol 6 (7) ◽  
pp. 82-86
Author(s):  
A. J. Adese ◽  
O. D. Olajide

The frequent collapse of buildings in Nigeria has necessitated carrying out a quality check not only on the structural design of these buildings but also on the materials used in their construction. Sandcrete blocks are used as a walling unit mostly because they are cheap and fast to produce. They can also be use as either load-bearing or non-load bearing purpose. Hence, this paper gives an in-depth quality assessment of sandcrete blocks commercially produced in Okitipupa Local Government Area of Ondo State, Nigeria. Six sandcrete block producing locations were visited within the local government and both six inches (6″) blocks (450×150×225 mm) and nine inches (9″) blocks (450×225×225 mm) from each location were randomly collected, together with their soil samples. Twenty-four control samples of 6″ and 9″ sandcrete blocks were also produced in accordance with the Nigerian Industrial Standard (NIS 87: 2007). Specific gravity test, silt/clay content and sieve analysis test were performed on each soil samples from different locations to check their suitability for block production, in addition, bulk density, compressive strength and water absorption were performed on the collected sandcrete blocks. In general, the compressive strength of the block samples was between 1.09 N/mm2 to 1.19 N/mm2 for six inches and 1.37 N/mm2 to 1.64 N/mm2 for nine inches which falls below the 2.5 N/mm2 and 3.45 N/mm2 minimum recommendation given by the NIS.


Sign in / Sign up

Export Citation Format

Share Document