scholarly journals Simulation studies of beam dynamics in 50 MeV linear accelerator with laser-plasma electron gun

2021 ◽  
pp. 260-270
Author(s):  
Sergey M. Polozov ◽  
Vladimir I. Rashchikov

Conventionally, electron guns with thermionic cathodes or field-emission cathodes are used for research or technological linear accelerators. RF-photoguns are used to provide the short electron bunches which could be used for FEL’s of compact research facilities to generate monochromatic photons. Low energy of emitted electrons is the key problem for photoguns due to high influence of Coulomb field and difficulties with the first accelerating cell simulation and construction. Contrary, plasma sources, based on the laser-plasma wakefield acceleration, have very high acceleration gradient but rather broad energy spectrum compared with conventional thermoguns or field-emission guns. The beam dynamics in the linear accelerator combines the laser-plasma electron source and conventional RF linear accelerator is discussed in this paper. Method to capture and re-accelerate the short picosecond bunch with extremely broad energy spread (up to 50 %) is presented. Numerical simulation shows that such bunches can be accelerated in RF linear accelerator to the energy of 50 MeV with output energy spread not higher than 1 % .

Author(s):  
D.W. Tuggle ◽  
S.G. Watson

The advantages of a room-temperature field emission (FE) cathode for forming a sub-micrometer high current, low voltage electron probe, namely small energy spread, high brightness and a small virtual source diameter are somewhat offset by the high vacuum required in the electron gun and the fluctuations in the emission current. The thermal-field mode of operation, with its relaxed vacuum requirements and relatively stable emission current has the disadvantage of an increased energy spread of emission, which degrades the spatial resolution of a focused beam. A Schottky point emitter, similar in geometry to a field emitter but with a larger radius, can achieve high current density by use of a low work function surface operating at elevated temperature. In the Schottky emission (SE) mode, electron transmission over the top of the potential barrier rather than tunneling through the barrier is the emission mechanism.


2002 ◽  
Vol 14 (1-4) ◽  
pp. 271-276
Author(s):  
Nasr A.M. Hafz ◽  
R. Hemker ◽  
A. Zhidkov ◽  
H. Okuda ◽  
W. Ghaly ◽  
...  

Author(s):  
Y. Harada ◽  
T. Goto ◽  
H. Koike ◽  
T. Someya

Since phase contrasts of STEM images, that is, Fresnel diffraction fringes or lattice images, manifest themselves in field emission scanning microscopy, the mechanism for image formation in the STEM mode has been investigated and compared with that in CTEM mode, resulting in the theory of reciprocity. It reveals that contrast in STEM images exhibits the same properties as contrast in CTEM images. However, it appears that the validity of the reciprocity theory, especially on the details of phase contrast, has not yet been fully proven by the experiments. In this work, we shall investigate the phase contrast images obtained in both the STEM and CTEM modes of a field emission microscope (100kV), and evaluate the validity of the reciprocity theory by comparing the experimental results.


Author(s):  
Max T. Otten ◽  
Wim M.J. Coene

High-resolution imaging with a LaB6 instrument is limited by the spatial and temporal coherence, with little contrast remaining beyond the point resolution. A Field Emission Gun (FEG) reduces the incidence angle by a factor 5 to 10 and the energy spread by 2 to 3. Since the incidence angle is the dominant limitation for LaB6 the FEG provides a major improvement in contrast transfer, reducing the information limit to roughly one half of the point resolution. The strong improvement, predicted from high-resolution theory, can be seen readily in diffractograms (Fig. 1) and high-resolution images (Fig. 2). Even if the information in the image is limited deliberately to the point resolution by using an objective aperture, the improved contrast transfer close to the point resolution (Fig. 1) is already worthwhile.


Author(s):  
L. F. Allard ◽  
E. Völkl ◽  
T. A. Nolan

The illumination system of the cold field emission (CFE) Hitachi HF-2000 TEM operates with a single condenser lens in normal imaging mode, and with a second condenser lens excited to give the ultra-fine 1 nm probe for microanalysis. The electron gun provides a guaranteed high brightness of better than 7×l08 A/cm2/sr, more than twice the guaranteed brightness of Schottky emission guns. There have been several articles in the recent literature (e.g. refs.) which claim that the geometry of this illumination system yields a total current which is so low that when the beam is spread at low magnifications (say 10 kX), the operator must “keep his eyes glued to the binoculars” in order to see the image. It is also claimed that this illuminating system produces an isoplanatic patch (the area over which image character does not vary significantly) at high magnification which is so small that the instrument is ineffective for recording high resolution images.


2020 ◽  
Vol 62 (5) ◽  
pp. 055004 ◽  
Author(s):  
Guangyu Li ◽  
Quratul Ain ◽  
Song Li ◽  
Muhammad Saeed ◽  
Daniel Papp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document