scholarly journals New Decompositions for Classes of Operators with Topological Uniform Descent

Author(s):  
Orlando García ◽  
Carlos Carpintero ◽  
José Sanabria ◽  
Osmin Ferrer

The article describes a new decomposition property for operators with topological uniform descent, like Kato type operators, as well as new results on the stability of this class of operators under perturbations by operators with finite-range power based on topological descent notion, from which we can generalize many perturbation results for a large classes of operators by extending to Banach spaces known techniques on Hilbert spaces. As application of our resuts we obtain that is a lower semi B-Weyl operator if and only if , where is a lower semi B-Browder operator and , for some . Our methods generalize to Banach spaces some results obtained by Aiena for operators acting on Hilbert spaces.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Aichun Liu ◽  
Junjie Huang ◽  
Alatancang Chen

Let X i , Y i i = 1,2 be Banach spaces. The operator matrix of the form M C = A C 0 B acting between X 1 ⊕ X 2 and Y 1 ⊕ Y 2 is investigated. By using row and column operators, equivalent conditions are obtained for M C to be left Weyl, right Weyl, and Weyl for some C ∈ ℬ X 2 , Y 1 , respectively. Based on these results, some sufficient conditions are also presented. As applications, some discussions on Hamiltonian operators are given in the context of Hilbert spaces.


1997 ◽  
Vol 40 (1) ◽  
pp. 88-102 ◽  
Author(s):  
M. L. Radulescu ◽  
F. H. Clarke

AbstractRecently, F. H. Clarke and Y. Ledyaev established a multidirectional mean value theorem applicable to lower semi-continuous functions on Hilbert spaces, a result which turns out to be useful in many applications. We develop a variant of the result applicable to locally Lipschitz functions on certain Banach spaces, namely those that admit a C1-Lipschitz continuous bump function.


Author(s):  
L. E. Labuschagne

SynopsisThe stability of several natural subsets of the bounded non-semi-Fredholm operators undercompact perturbations were studied by R. Bouldin [2] in separable Hilbert spaces and by M. Gonzales and V. M. Onieva [6] in Banach spaces. The aim of this paper is to study this problem for closed operators in operator ranges. The main results are a characterisation of the non-semi-Fredholm operators with respect to α-closed and α-compact operators as well as a generalisation of a result of M. Goldman [5]. We also give some applications of the theory developed to ordinary differential operators.


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


Author(s):  
J. A. Conejero ◽  
F. Martínez-Giménez ◽  
A. Peris ◽  
F. Rodenas

AbstractWe provide a complete characterization of the possible sets of periods for Devaney chaotic linear operators on Hilbert spaces. As a consequence, we also derive this characterization for linearizable maps on Banach spaces.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


1986 ◽  
pp. 159-291
Author(s):  
Shizuo Kakutani ◽  
Victor Klee ◽  
Kôsaku Yosida ◽  
Yukio Mimura ◽  
H. F. Bohnenblust ◽  
...  
Keyword(s):  

Filomat ◽  
2020 ◽  
Vol 34 (13) ◽  
pp. 4311-4328
Author(s):  
A.R. Sharifi ◽  
Azadi Kenary ◽  
B. Yousefi ◽  
R. Soltani

The main goal of this paper is study of the Hyers-Ulam-Rassias stability (briefly HUR-approximation) of the following Euler-Lagrange type additive(briefly ELTA) functional equation ?nj=1f (1/2 ?1?i?n,i?j rixi- 1/2 rjxj) + ?ni=1 rif(xi)=nf (1/2 ?ni=1 rixi) where r1,..., rn ? R, ?ni=k rk?0, and ri,rj?0 for some 1? i < j ? n, in fuzzy normed spaces. The concept of HUR-approximation originated from Th. M. Rassias stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.


Sign in / Sign up

Export Citation Format

Share Document