Total ionizing dose effect on 2-D array data transfer ICs designed and fabricated by 0.18-µm CMOS technology

Author(s):  
Takashi Yoda ◽  
Noboru Ishihara ◽  
Yuta Oshima ◽  
Motoki Ando ◽  
Kohei Kashiwagi ◽  
...  

Abstract Circuits for CMOS two-dimensional (2-D) array data transfer are indispensable for applications such as space and nuclear fields. Issues include to be operated with higher speed, lower power, fewer size penalty and radiation hardness. To meet these requirements, two kinds of CMOS 2-D array data transfer circuits, such as a shift register type and a memory access type, are proposed and fabricated by the standard 0.18-µm CMOS process technology. In the both types, 16 µm pitch, 8×124 array data transfer operations were realized with data rate of more than 1 Gb/s. Furthermore, we conducted 60Co γ-ray irradiation experiments on those circuits. The current consumption ratio of the shift register type to the memory access type ranges from 150 to 200% as the dosage increases. The result indicate that the memory access type has better radiation hardness at 1 Gb/s than that of the shift register type.

2019 ◽  
Vol 82 (1) ◽  
Author(s):  
Florence Choong ◽  
Mamun Ibne Reaz ◽  
Mohamad Ibrahim Kamaruzzaman ◽  
Md. Torikul Islam Badal ◽  
Araf Farayez ◽  
...  

Digital controlled oscillator (DCO) is becoming an attractive replacement over the voltage control oscillator (VCO) with the advances of digital intensive research on all-digital phase locked-loop (ADPLL) in complementary metal-oxide semiconductor (CMOS) process technology. This paper presents a review of various CMOS DCO schemes implemented in ADPLL and relationship between the DCO parameters with ADPLL performance. The DCO architecture evaluated through its power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. It can be concluded that even though there are various schemes of DCO that have been implemented for ADPLL, the selection of the DCO is frequently based on the ADPLL applications and the complexity of the scheme. The demand for the low power dissipation and high resolution DCO in CMOS technology shall remain a challenging and active area of research for years to come. Thus, this review shall work as a guideline for the researchers who wish to work on all digital PLL.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Munir A. Al-Absi

This paper presents a new compact controllable impedance multiplier using CMOS technology. The design is based on the use of the translinear principle using MOSFETs in subthreshold region. The value of the impedance will be controlled using the bias currents only. The impedance can be scaled up and down as required. The functionality of the proposed design was confirmed by simulation using BSIM3V3 MOS model in Tanner Tspice 0.18 μm TSMC CMOS process technology. Simulation results indicate that the proposed design is functioning properly with a tunable multiplication factor from 0.1- to 100-fold. Applications of the proposed multiplier in the design of low pass and high pass filters are also included.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000020-000026 ◽  
Author(s):  
Rex Lowther ◽  
David Gifford ◽  
Wesley Morris ◽  
Jim Jensen ◽  
Scott Peterson ◽  
...  

Silicon Space Technology has developed a commercial bulk CMOS process technology, HardSIL™, which allows optimization of performance, power, and lifetime at high temperatures. A method for preventing latchup, originally developed for use in the space radiation environment, is presently applied to terrestrial high-temperature environments. With the possibility of latchup eliminated in scaled CMOS technology nodes, further designs specific for high-temperature environments have proceeded well. This novel technology has been applied to our 18Mb synchronous burst SBRAM and our ARM® Cortex® M0 microcontroller, and in two CMOS processes at the 130nm technology node (Texas Instruments and GLOBALFOUNDRIES). Extensive temperature testing on these parts demonstrates that bulk silicon CMOS technology has a practical temperature limit of 250°C or higher. Both the microcontroller and the SBRAM have been tested with clock rates up to 70MHz and at temperatures up to 260°C. Both parts have performed without error and without latchup under these conditions, and with low operating current and low leakage current. For example, the 130 million-transistor 18Mb SBRAM has average core leakage current of 580mA at 250°C and core voltage of 1.5V with test lots and simulations showing further reduction in leakage in the next, terrestrial version of this part. In addition, the 18Mb SBRAM is undergoing an endurance test at 250°C, presently at the 2500 hour milestone. Operation at temperatures beyond the present limit of the testing equipment (260°C) appears possible from extrapolation of current data. Integration levels of greater than 8 million gates on a bulk CMOS device would allow multi-core processors with large on-chip secondary caches. Additional DSP engines or other compute engines can be accommodated for processing high resolution three dimensional images in real time. This would provide substantial distributed processing in drilling or jet engine control. These system-on-chip (SOC) integration levels can substantially reduce mechanical failures in a subsystem by reducing the number of wire bonds from greater than 1000 connections to less than 100 connections. Integration of mixed-signal A/Ds and D/As as well as on-chip power management provides a path to further reduction in mechanical connections in a sub-system.


2019 ◽  
Vol 3 (3) ◽  
pp. 14-18
Author(s):  
Nor Samida Yaacob ◽  

A temperature-stable, low-power ring oscillator design for implementation in an Application-Specific Integrated Circuit (ASIC) is presented. In this work, the design uses a new arrangement of chain delay elements consisting of a current-starved inverter and a CMOS capacitor. This power consumption improvement ring oscillator design was built in the environment of 130nm CMOS process technology using Mentor Graphics environment with voltage supply 1V. The simulation results show a maximum power consumption of 1.036 nW and it shows that the presented design is applicable in low power advanced sensing systems application including biomedical, chemical, and other sensors.


CMOS technology plays an important role in the modern electronics world. CMOS technology also plays significant role in aerospace applications. To store data, memories are widely used as the medium in aerospace applications. SRAM cells are the memories made by the CMOS technology. The most vital issues faced by memories are due to single event upsets (SEUs) which are induced by radiation particles. The SEU’s due to increase in densities and SEU’s. There is a decrease in critical charge and supply voltage in CMOS process technology. There is a need for a technique which can to tolerate these SEU’s in such aerospace applications. Which are in the environment of complex celestial radiation? The technique which is considered for such environment is radiation-hardened by design (RHBD) with soft error robustness. This paper aims at is proposing an area efficient and high reliable RHBD memory cell for the above said application using 45nm technology in Cadence Tool. Depending on power, write/read time, the layout area of 14T, 12T and 10T RHBD memory cells and their performance on power for read/write operations are observed. A comparative study is also done on these memory cells based the parameters considered.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1856
Author(s):  
Yen-Chung Chiang ◽  
Juo-Chen Chen ◽  
Yu-Hsin Chang

In a radio frequency (RF) system, it is possible to use variable inductors for providing tunable or selective frequency range. Variable inductors can be implemented by the microelectromechanical system (MEMS) process or by using transistors as switches to change the routing of coils or coupling quantities. In this paper, we investigated the design method of a variable inductor by using MOS transistors to switch the main coil paths and the secondary coupled coils. We observed the effects of different metal layers, turn numbers, and layout arrangements for secondary-coupled coils and compared their characteristics on the inductances and quality factors. We implemented two chips in the 0.18 m CMOS process technology for each kind of arrangement for verification. One inductor can achieve inductance values from about 300 pH to 550 pH, and the other is between 300 pH and 575 pH, corresponding to 59.3% and 62.5%, respectively, inductance variation range at 4 GHz frequency. Additionally, their fine step sizes of the switched inductances are from 0.5% to 6% for one design, and 1% to 12.5% for the other. We found that both designs achieved a large inductance tuning range and moderate inductance step sizes with a slight difference behavior on the inductance variation versus frequency.


2020 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Po-Yu Kuo ◽  
Ming-Hwa Sheu ◽  
Chang-Ming Tsai ◽  
Ming-Yan Tsai ◽  
Jin-Fa Lin

The conventional shift register consists of master and slave (MS) latches with each latch receiving the data from the previous stage. Therefore, the same data are stored in two latches separately. It leads to consuming more electrical power and occupying more layout area, which is not satisfactory to most circuit designers. To solve this issue, a novel cross-latch shift register (CLSR) scheme is proposed. It significantly reduced the number of transistors needed for a 256-bit shifter register by 48.33% as compared with the conventional MS latch design. To further verify its functions, this CLSR was implemented by using TSMC 40 nm CMOS process standard technology. The simulation results reveal that the proposed CLSR reduced the average power consumption by 36%, cut the leakage power by 60.53%, and eliminated layout area by 34.76% at a supply voltage of 0.9 V with an operating frequency of 250 MHz, as compared with the MS latch.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2260
Author(s):  
Khuram Shehzad ◽  
Deeksha Verma ◽  
Danial Khan ◽  
Qurat Ul Ain ◽  
Muhammad Basim ◽  
...  

A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register (SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment (WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To optimize the architecture with respect to power consumption and performance, several techniques are proposed. A switching method which employs the common mode charge recovery (CMCR) switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the switching energy. The switching technique proposed in our work consumes 56.3% less energy in comparison with conventional CMCR switching method. For high speed operation with low power consumption and to overcome the kick back issue in the comparator part, a mutated dynamic-latch comparator with cascode is implemented. In addition, to optimize the flexibility relating to the performance of logic part, an asynchronous topology is employed. The structure is fabricated in 65 nm CMOS process technology with an active area of 0.14 mm2. With a sampling frequency of 20 MS/s, the proposed architecture attains signal-to-noise distortion ratio (SNDR) of 65.44 dB at Nyquist frequency while consuming only 472.2 µW with 1 V power supply.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 737
Author(s):  
An-Chen Liu ◽  
Po-Tsung Tu ◽  
Catherine Langpoklakpam ◽  
Yu-Wen Huang ◽  
Ya-Ting Chang ◽  
...  

GaN has been widely used to develop devices for high-power and high-frequency applications owing to its higher breakdown voltage and high electron saturation velocity. The GaN HEMT radio frequency (RF) power amplifier is the first commercialized product which is fabricated using the conventional Au-based III–V device manufacturing process. In recent years, owing to the increased applications in power electronics, and expanded applications in RF and millimeter-wave (mmW) power amplifiers for 5G mobile communications, the development of high-volume production techniques derived from CMOS technology for GaN electronic devices has become highly demanded. In this article, we will review the history and principles of each unit process for conventional HEMT technology with Au-based metallization schemes, including epitaxy, ohmic contact, and Schottky metal gate technology. The evolution and status of CMOS-compatible Au-less process technology will then be described and discussed. In particular, novel process techniques such as regrown ohmic layers and metal–insulator–semiconductor (MIS) gates are illustrated. New enhancement-mode device technology based on the p-GaN gate is also reviewed. The vertical GaN device is a new direction of development for devices used in high-power applications, and we will also highlight the key features of such kind of device technology.


Sign in / Sign up

Export Citation Format

Share Document