Decarboxylation efficiency of carboxylic acids as ligands of metal oxide nanocluster resists upon γ-ray irradiation

Author(s):  
Tomoe Otsuka ◽  
Yusa Muroya ◽  
Takuya Ikeda ◽  
Yoshitaka Komuro ◽  
Daisuke Kawana ◽  
...  

Abstract Metal oxide nanocluster resists have recently attracted considerable attention for use in extreme ultraviolet (EUV) lithography. To obtain sophisticated guidelines for material design, it is necessary to understand well the radiation-induced chemical reaction scheme including the insolubilization mechanism. In this study, the production of CO2, which is considered to be one of the end products of treatment with an ionizing radiation, was investigated for eight types of carboxylic acid under various conditions using -rays (60Co) as a radiation source. The amount of CO2 produced was measured by gas chromatography (GC). GCO2 (/100 eV), which indicates decarboxylation efficiency, was evaluated. CO2 was generated through electron addition, hole transfer, and hydroxyl radical addition to the molecular and ionic forms of carboxylic acids. The dependences of GCO2 on reaction partners were clarified. The dependences of GCO2 on the molecular structure and dissociative state of carboxylic acids were also clarified.

2013 ◽  
Vol 54 (32) ◽  
pp. 4324-4326 ◽  
Author(s):  
Yasuharu Yoshimi ◽  
Sonoka Washida ◽  
Yoshiki Okita ◽  
Keisuke Nishikawa ◽  
Kousuke Maeda ◽  
...  

2021 ◽  
Author(s):  
Wei Hu ◽  
Jiawu Liang ◽  
Song Liao ◽  
Zhidong Zhao ◽  
Yuxing Wang ◽  
...  

Abstract Background Ionizing radiation poses a challenge to the healing of bone defects. Radiation therapy and accidental exposure to gamma-ray (γ-ray) radiation inhibit bone formation and increase the risk of fractures. Cortical bone-derived stem cells (CBSCs) are essential for osteogenic lineages, bone maintenance, and repair. This study aimed to investigate the effects of melatonin on postradiation CBSCs and bone defects. Methods CBSCs were extracted from C57/BL6 mice and were identified by flow cytometry. The effects of exogenous melatonin on the self-renewal and osteogenic capacity of postradiation CBSCs were detected in vitro. The underlying mechanisms in terms of genomic stability, apoptosis and oxidative stress-related signaling were further analyzed by western blotting, flow cytometry and immunofluorescence. Finally, the effects of melatonin on healing in postradiation bone defects were evaluated in vivo by micro-CT and immunohistochemical analysis. Results The radiation-induced reduced self-renewal and osteogenic capacity were partially reversed in postradiation CBSCs treated with melatonin. Melatonin maintained the genomic stability and apoptosis of postradiation CBSCs, and intracellular oxidative stress was decreased significantly while antioxidant-related enzymes were enhanced. Western blotting verified the anti-inflammatory effect of melatonin by downregulating the levels of IL-6 and TNF-α via extracellular regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) signaling, distinct from its antioxidant effect via NRF2 signaling. In vivo experiments demonstrated that the newly formed bone in the melatonin plus Matrigel group had higher trabecular bone volume per tissue volume (BV/TV) and bone mineral density (BMD) values, and lower levels of IL-6 and TNF-α than those in the irradiation and the Matrigel groups. Conclusions This study suggested the potential of melatonin to protect CBSCs against γ-ray radiation and to assist the healing of postradiation bone defects.


Author(s):  
Sungwoo Park ◽  
Hyungwoo Lee ◽  
Muyoung Kim ◽  
Taegyeom Kim ◽  
Byunghoon Lee ◽  
...  

In extreme ultraviolet lithography (EUVL), non-uniformity of patterned surface roughness of contact holes results in pattern failures such as bridging- or missing holes, which affect production yield. In this study,...


2010 ◽  
Vol 31 (4) ◽  
pp. 910-914 ◽  
Author(s):  
Sang-Wook Kim ◽  
Bob-Jin Kwon ◽  
Jeong-Hoon Park ◽  
Min-Goo Hur ◽  
Seung-Dae Yang ◽  
...  

2018 ◽  
Vol 57 (47) ◽  
pp. 15430-15434 ◽  
Author(s):  
Chao Shu ◽  
Riccardo S. Mega ◽  
Björn J. Andreassen ◽  
Adam Noble ◽  
Varinder K. Aggarwal

Author(s):  
Danilo De Simone ◽  
Luka Kljucar ◽  
Poulomi Das ◽  
Romuald Blanc ◽  
Christophe Beral ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 129 ◽  
Author(s):  
Chidozie Onwudinanti ◽  
Ionuţ Tranca ◽  
Thomas Morgan ◽  
Shuxia Tao

Hydrogen interaction with ruthenium is of particular importance for the ruthenium-capped multilayer reflectors used in extreme ultraviolet (EUV) lithography. Hydrogen causes blistering, which leads to a loss of reflectivity. This problem is aggravated by tin. This study aims to uncover the mechanism via which tin affects the hydrogen uptake, with a view to mitigation. We report here the results of a study of hydrogen interaction with the ruthenium surface in the presence of tin using Density Functional Theory and charge density analyses. Our calculations show a significant drop in the energy barrier to hydrogen penetration when a tin atom or a tin hydride molecule (SnHx) is adsorbed on the ruthenium surface; the barrier has been found to drop in all tested cases with tin, from 1.06 eV to as low as 0.28 eV in the case of stannane (SnH4). Analyses show that, due to charge transfer from the less electronegative tin to hydrogen and ruthenium, charge accumulates around the diffusing hydrogen atom and near the ruthenium surface atoms. The reduced atomic volume of hydrogen, together with the effect of electron–electron repulsion from the ruthenium surface charge, facilitates subsurface penetration. Understanding the nature of tin’s influence on hydrogen penetration will guide efforts to mitigate blistering damage of EUV optics. It also holds great interest for applications where hydrogen penetration is desirable, such as hydrogen storage.


2019 ◽  
Vol 6 (13) ◽  
pp. 2245-2249 ◽  
Author(s):  
Guibing Wu ◽  
Jingwen Wang ◽  
Chengyu Liu ◽  
Maolin Sun ◽  
Lei Zhang ◽  
...  

A metal-free photoredox catalyzed decarboxylative radical coupling of free-carboxylic acids and glyoxylic oximes was developed to synthesize α,β-diamino acids.


Sign in / Sign up

Export Citation Format

Share Document