scholarly journals Turbine Mode Performance Evaluation of Centrifugal Pump

This paper presents the performance evaluation results of a radial discharge centrifugal pump obtained through experimentation and CFD simulation. The paper also presents a brief theory behind the difference in the performance of a centrifugal pump operated in pump mode and turbine mode. The pump CFD simulation is performed with Star CCM+ simulation software. The pumps studied are both mono block radial discharge centrifugal pumps with rated speed of rotation per minute as 1400 and 2800 and specific speeds 20.65 (m,m3 /s) and 35.89 (m,m3 /s) respectively. The CFD results were first validated for pump mode by comparing them with the manufacturer provided performance curves. The results of CFD simulation for turbine mode operation are then compared with experimentally obtained results. The paper also presents a brief theory about PAT concept.

Author(s):  
Qian-qian Li ◽  
Da-zhuan Wu

Due to the distinctive characteristic of massive flow rates, double-suction centrifugal pump has been extensively applied in lots of perspectives, such as drainage, irrigation, transportation projects and other hydraulic engineering realms. Nevertheless, the significance of the pressure fluctuation inside the double-suction centrifugal pump, which is getting more and more prominent under the soaring demands for low noise and comfortable living environment, could not be underestimated. Consequently, how to reduce the pressure fluctuation as far as possible and enhance the running stability of the pump is always the research hotspot. In this study, the double-suction centrifugal impeller with abominable vibration performance is redesigned to improve the internal flow and reduce the flow-induced noise. What’s addition, the two redesigned impellers wearing splitter blades were compared in staggered arrangement with different angles for the purpose of ulteriorly decreasing the pressure fluctuation. On the basis of Realizable k-ε model and SIMPLEC algorithm, the unsteady Reynolds-averaged Navier-Stokes equations (URANS) were resolved by means of CFD simulation and the flow performance and the vibration performance were validated with the experiments. The results illustrate that the redesigned impeller with multi-blade could raise the hydraulic performance and reduce the pressure fluctuation inside the pump. When the impeller of each side was laid with the staggered angle of 12 degrees, the pressure distribution tended to be more uniform and the pressure fluctuation was well ameliorated. Through the pressure fluctuation analysis in time domain and frequency domain, the pressure change inside the pumps could be evaluated quantitatively and accurately, hence different pumps could be contrasted in detail. The consequences of this paper could provide reference for pressure fluctuation reduction and vibration performance reinforcement of double-suction centrifugal pumps as well as other vane pumps.


2018 ◽  
Vol 4 (11) ◽  
pp. 8
Author(s):  
Bhanwar Lal ◽  
Dr. T. S. Deshmukh

The   aim of this research is to perform numerical simulation of centrifugal pump and PATs mode to analyse its cavitation characteristics and NPSHr at different operating conditions. It was found that maximum efficiency at design discharge for the PAT is about 2 % less than the efficiency in pump mode. It is observed that the efficiencies increase steadily on increasing the discharge from 8.88 kg/s to 14.8 kg/s. in both pump and turbine mode. Thereafter the rate of increase in efficiency becomes very less when increase in discharge to 17.76 kg/s.  Maximum efficiency of 59.49 % being achieved at 14.8 kg/s.


Author(s):  
Vincenzo De Rose ◽  
Francesca Martelli ◽  
Massimo Milani ◽  
Luca Montorsi

The use of pumps as turbines (PAT) has gained importance in the recent years as a possible alternative to specifically developed turbine for mini/micro hydropower plants. The use of production pump for hydropower generation reduces the capital cost of the plant but the energy conversion efficiency can be remarkably lower. The paper analyses the performance of a production centrifugal pump running both in direct and reverse mode. The analysis calculates theoretically the behavior of the PAT under the best efficiency point and extends the investigation to other operating points using both a combined theoretical approach and CFD simulation under dynamic conditions. The effects of possible modifications to the initial design of the pump are investigated when running in turbine mode and their influence on the standard pump operation is also determined. Numerical simulation demonstrates that the impeller trimming leads to improvement in the PAT efficiency in some operating conditions. Conversely, the rotational speeds close to the values typical for the electric generator reduce the PAT performance. Finally, the modification of the impeller geometry at the turbine inlet increases the PAT efficiency but lowers the performance of the machine when running in pump mode.


Author(s):  
Freddy Jeanty ◽  
Jesu´s De Andrade ◽  
Miguel Asuaje ◽  
Frank Kenyery ◽  
Auristela Va´squez ◽  
...  

Cavitation is a common phenomenon that appears during the operation of the hydraulic turbomachines reducing performance and life of Centrifugal pumps. The main goal of this work is primarily a CFD-simulation of the whole Centrifugal Pump-Turbine including the suction cone, impeller, diffuser blades and volute, in order to characterize and evaluate its performance under cavitation conditions. The CFD simulations results were compared with experimental data under cavitation and non-cavitation conditions. A good agreement has been obtained under non-cavitation conditions for global performance parameters. After the implementation of the Rayleigh Plesset cavitation model, the required Net Positive Suction Head (NPSHr) has been predicted from CFD simulations. Finally, a full cavitation test can be reproduced for a Hydraulic Turbomachine to avoid this dangerous phenomenon.


2012 ◽  
Vol 249-250 ◽  
pp. 512-516
Author(s):  
Hui Min Zhang ◽  
Guang Ji Li ◽  
Dong Mei Peng

Centrifugal pump is widely used in plants as well as in common life. In many conditions, the centrifugal pumps do not operate in their optimal points for various reasons. In order to increase the efficiency, it is often used that the centrifugal pump rotates in different speed. In this paper, the 3D software UG is used to establish the model of pump. The simulation software FLUENT is used to analysis the flow field and pressure in the impeller. The numerical simulation shows that when the speed changed the flow field is similar in the impeller. The performance get from numerical simulation is compared with standard curve.


Author(s):  
Faisal Ansori ◽  
Edi Widodo

The pump is a tool to provide the mechanical energy to the liquid in the pump constant fluid density and large. In terms of mechanism, the pump is divided into three types, namely, rotary pumps, pump the shaft/piston and centrifugal pumps. The use of the pump are the most widely used either in the household or in the environment industry. In the centrifugal pumps, there are losses – losses among other head losses. To find the head losses among other data needs head on the pump, the pump and the discharge flow rate of the pump. Head is defined as energy per unit weight of the fluid. The head of the unit (H) meters or feet is fluid. In the pump, the head is measured by calculating the difference between the total pressure of the suction pipe and the pipe press, when measurement is done at the same height. For single full pump openings 0,00246 m³ \ s, valve openings ¾ 0,00210 and aperture of ½ 0,00177 m³ \ s can be concluded the discharge of water at the pump the larger the opening of the valve the greater the discharge of its water. Moreover, vice versa, if the opening of the valve is getting smaller then the water debit is getting smaller. For full opening valves 3,11 m / s, for openings ¾ 2,65 m / s and ½ 2,23 m / s open valve openings. For the flow, velocity can be concluded the greater the opening of the valve the flow velocity is smaller and vice versa the smaller the opening of the valve the greater the flow rate. single centrifugal pump full valve openings 0.409 kg / cm², the opening of the valve ¾ 0,209 kg / cm² and the opening of the valve ½ 00,069 kg / cm² can be concluded the smaller the opening of the opening valve the smaller the head as well, and the greater the open valve opening, the more big head also in the can.


In this study, the best efficiency point of end suction, radial discharge, centrifugal pump operated in turbine mode was arrived applying numerical and experimental analysis. The pump was simulated both in direct and turbine modes using Star CCM+ CFD software. Characteristic curves were developed for the pump in direct and turbine modes. A monoblock centrifugal pump of specific speed 35.89 (m, m3 /s) was used for this study. The pump was tested experimentally in turbine and pump mode .The theoretical and numerical results were verified by those obtained through experimentation. Some of the correlations proposed by earlier researchers for performance prediction of pump in reverse mode were also tested


Author(s):  
Wenguang Li ◽  
Yuliang Zhang

In this study, the cavitating flow and cavitation performance are studied by employing the computational fluid dynamics method in the turbine mode of a centrifugal pump at part-load, best efficiency, and over-load points. The flow models are validated in the pump mode under noncavitation condition. The relationships between the performance variables and net positive suction head available are obtained, and the corresponding net positive suction heads required are extracted. The flow patterns, location, and shape of the cavity are illustrated; the pressure coefficient profiles on the blade surfaces are clarified and compared with those in the pump mode under both noncavitation and critical cavitation conditions. The cavitation performance and flow pattern as well as cavity shape in the turbine mode are distinguishably different from the pump mode. It is found out that the cavitation behavior in the turbine mode exhibits three notable features: a lower and less flow rate-dependent net positive suction head required, a flow rate-dependent suppressed rotational flow in the draft tube, as well as a rotational and extendable cavitating rope originated from the impeller cone. The results and methods can be important and useful for the design and selection of a centrifugal pump as turbine.


Author(s):  
Giuseppe Rocco ◽  
Bruno Schiavello ◽  
Davide Pirola ◽  
Giancarlo Cicatelli

The design of a large size centrifugal pump with conflictual requirements from customized specifications is a hard engineering challenge. Centrifugal pumps are the most commonly used in different industrial fields like power generation, oil & gas, chemical plants, desalination, pipeline, water treatment, agriculture, automotive, aerospace, and domestic applications. On the other hand, centrifugal pumps are a very complex type of turbomachines in which mechanical energy is converted into pressure energy by means of blades action and angular momentum change. To design and develop a centrifugal pump, it is very important to have a long experience and ability to predict the final performance with good accuracy. The design can be very complex because the flow in a centrifugal pump is a very complex turbulent, three dimensional and time-dependent flows. The primary purpose of this paper is to show a comparison between numerical analysis performed by means of a commercial code and the experimental results obtained during the testing phase of a very large in-line centrifugal pump, including suction casing - double suction impeller - double volute - discharge branch diffuser. The key focus will be in the comparison between test measurements and numerical results in term of overall performance (head, power and efficiency) as verification and validation of the CFD simulation for future applications.


Sign in / Sign up

Export Citation Format

Share Document