scholarly journals Condition Monitoring and Feature Extraction of Stator Current Phasors for Enhanced Fault Diagnosis in AC Drive

Author(s):  
Jyothi R ◽  
◽  
Tejas Holla ◽  
Umesh NS ◽  
K Uma Rao ◽  
...  

AC drives are employed mainly in process plants for various applications. In most industrial applications, Induction motor drives are preferred as they are robust, reliable, and efficient. Process industries have seen a paradigm shift from manual control to automatic control. Advancements in power electronics technology have led to smooth control of the induction motor using variable frequency drives over an entire speed range. Variable Frequency Drives (VFD) comprises of Voltage source inverter and a three phase squirrel cage induction motor. Various electric faults that are incipient in the VFD cause an abrupt change in circuit parameters resulting in insulation damage, reduced efficiency, and leading to catastrophic failure of the entire system. Hence, continuous monitoring of the system parameters such as stator current, speed, and the vibration of the machine is essential to diagnose incipient faults in the system. AI techniques have been effectively used in the fault diagnosis of electrical systems. In the proposed work, simulation results of machine learning-based fault diagnosis techniques are presented. Real-time IoT-based condition monitoring of the Variable Frequency Drive is also implemented for enhanced fault diagnosis of various incipient electrical faults in AC drives. The experimental results obtained are validated with the simulation data.

Author(s):  
Jyothi R ◽  
Tejas Holla ◽  
Uma Rao K ◽  
Jayapal R

AC drives are employed in process industries for varying applications resulting in a wide range of ratings. The entire process industry has seen a paradigm shift from manual to automated systems. The major factor contributing to this is the advanced power electronics technology enabling power electronic drives for smooth control of electric motors. Induction motors are most commonly used in industries. Faults in the power electronic circuits may occur periodically. These faults often go unnoticed as they rarely cause a complete shutdown and the fault levels may not be large enough to lead to a breakdown of the drive. An early detection of these faults is required to prevent their escalation into major faults. The diagnostic tool for detection of faults requires real time monitoring of the entire drive. In this work, detailed investigation of different faults that can occur in the power electronic circuit of an industrial drive is carried out. Analysis and impact of faults on the performance of the induction motor is presented. A real time monitoring platform is proposed to detect and classify the fault accurately using machine learning. A diagnostic tool also is developed to display the severity and location of the fault to the operator to take corrective measures.


2019 ◽  
Vol 6 (2) ◽  
pp. d1-d8 ◽  
Author(s):  
S. Altaf ◽  
M. S. Mehmood ◽  
M. W. Soomro

Machine fault diagnosis is a very important topic in industrial systems and deserves further consideration in view of the growing complexity and performance requirements of modern machinery. Currently, manufacturing companies and researchers are making a great attempt to implement efficient fault diagnosis tools. The signal processing is a key step for the machine condition monitoring in complex industrial rotating electrical machines. A number of signal processing techniques have been reported from last two decades conventionally and effectively applied on different rotating machines. Induction motor is the one of widely used in various industrial applications due to small size, low cost and operation with existing power supply. Faults and failure of the induction machine in industry can be the cause of loss of throughput and significant financial losses. As compared with the other faults with the broken rotor bar, it has significant importance because of severity which leads to a serious breakdown of motor. Detection of rotor failure has become significant fault but difficult task in machine fault diagnosis. The aim of this paper is indented to summarizes the fault diagnosis techniques with the purpose of the broken rotor bar fault detection. Keywords: machine fault diagnosis, signal processing technique, induction motor, condition monitoring.


Author(s):  
Abdullah Alwadie

<span style="color: black; font-family: 'Times New Roman','serif'; font-size: 10pt; mso-fareast-font-family: SimSun; mso-themecolor: text1; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">Induction motors are work-horse of the industry and major element in energy conversion. The replacement of the existing non-adjustable speed drives with the modern variable frequency drives would save considerable amount of electricity. A proper control scheme for variable frequency drives can enhance the efficiency and performance of the drive. This paper attempt to provide a rigorous review of various control schemes for the induction motor control and provides critical analysis and guidelines for the future research work. A detailed study of sensor based control schemes and sensor-less control schemes has been investigated. The operation, advantages, and limitations of the various control schemes are highlighted and different types of optimization techniques have been suggested to overcome the limitations of control techniques</span>


Sign in / Sign up

Export Citation Format

Share Document