scholarly journals A Hybrid Self-Voltage Balanced Multilevel Inverter Topologies for Induction Motors

Author(s):  
Sanjeev Kumar ◽  
◽  
H.K. Verma ◽  
M.P.S. Chawla ◽  
◽  
...  

A hybrid structured asymmetric switching capacitor multilevel inverter (ASC-MLI) is suggested in this work. The notion behind presenting this topology is to reduce the device count and DC sources as compared with conventional MLI. The step by step operating mode of single phase ASC-MLI is presented and by doing slight modifications the same configuration is used in three phase utility application and electric drive. The proposed configurations utilize major benefits of self-voltage balancing capability of capacitor voltage, which is independent from different load type and modulations index. To generate the switching pulse for corresponding switches the multi-carrier based sinusoidal pulse width modulation (MCS-PWM) technique is used; in addition to this simulation result are obtained using MATLAB/Simulink 2016b software version. Simulation results of an induction motor drive connected as three phase load highlights good performance of 17-level MLI.

Author(s):  
Nunsavath Susheela ◽  
P. Satish Kumar

The multilevel inverters are very popular in high power high voltage applications. However the multilevel inverters has some demerits such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem. The hybrid multilevel inverter presented in this paper has superior characteristics over conventional multilevel inverters. The hybrid multilevel inverter employs fewer components and less carrier signals when compared to conventional multilevel inverters. It consists of level generation and polarity generation stages which involves high frequency and low frequency switches. The complexity and overall cost for higher output voltage levels are greatly reduced. Implementation of single phase 7-level, 9-level and 11-level hybrid multilevel inverter has been performed using sinusoidal pulse width modulation (SPWM) strategies i.e., phase disposition (PD), alternate phase opposition disposition (APOD) and carrier overlapping (CO). Also the three techniques are compared in terms of total harmonic distortion (THD) for various modulation indices and observed to be greatly improved when compared to conventional topologies. The performance of single phase eleven level hybrid inverter is analyzed for different loads.  Simulation is performed using MATLAB/ Simulink.


Author(s):  
Nunsavath Susheela

<p>The multilevel inverters have highly desirable characteristics in high power high voltage applications. The multilevel inverter was started first with diode clamped multilevel inverter. Later, various configurations have been came into existence for many applications. However the multilevel inverters have some demerits such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem. The hybrid multilevel inverter presented in this paper has superior characteristics over conventional multilevel inverters. The hybrid multilevel inverter employs fewer components and less carrier signals when compared to conventional multilevel inverters. It consists of level generation and polarity generation stages which involves high frequency and low frequency switches. The complexity and overall cost for higher output voltage levels are greatly reduced. Implementation of single phase 7-level, 9-level and 11-level diode clamped multilevel inverter and hybrid multilevel inverter has been performed using sinusoidal pulse width modulation (SPWM) strategies i.e., phase disposition (PD), alternate phase opposition disposition (APOD). Also these techniques are compared in terms of total harmonic distortion (THD) for various modulation indices and observed to be greatly improved in case of hybrid inverter when compared to diode clamped inverter. The comparative study of performance for single phase diode clamped multilevel inverter and hybrid inverter is analyzed with different loads.  Simulation is performed using MATLAB/ SIMULINK. </p>


Author(s):  
MANASA S ◽  
BALAJI RAMAKRISHNA S ◽  
MADHURA S ◽  
MOHAN H M

This paper deals with study of Three phase Five Level and Seven Level inverter fed induction motor drive . Both five level and seven level are realized by cascading two H- bridges. The poor quality of voltage and current of a conventional inverter fed induction machine is due to the presence of harmonics and hence there is significant level of energy losses. The Multilevel inverter is used to reduce the harmonics. The inverters with a large number of steps can generate high quality voltage waveforms. The higher levels can follow a voltage reference with accuracy and with the advantage that the generated voltage can be modulated in amplitude instead of pulse-width modulation. An active harmonic elimination method is applied to eliminate any number of specific higher order harmonics of multilevel converters with unequal dc voltages. The simulation of three phase five and seven level inverter fed induction motor model is done using Matlab/Simulink. The FFT spectrums for the outputs are analyzed to study the reduction in the harmonics.


Sign in / Sign up

Export Citation Format

Share Document