scholarly journals A Systemic view of One-Pass Cryptographic Key Distribution Techniques for WSNs

The availability and use of cheaper and smaller sensors has brought an evolution in the field of Wireless Sensor Networks. The changes occurring in the environment can be observed, recorded through the large-scale deployment of sensor nodes that can build-up the much-required information system. Also, they are able to monitor and congregate data about the living organisms therein. In near future, millions more devices are expected to be connected. We focus upon the security services required by WSNs that are most challenging as compared to other networks. First, we introduce the commercially used motes with the comparison of technical and implementation related issues. Second, we analysed the variants of existing one-pass key management protocols for the resource constrained devices. Our aim is to provide a new direction to WSN Security through a restricted key distribution mechanism.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Ashwag Albakri ◽  
Lein Harn ◽  
Sejun Song

Securing data transferred over a WSN is required to protect data from being compromised by attackers. Sensors in the WSN must share keys that are utilized to protect data transmitted between sensor nodes. There are several approaches introduced in the literature for key establishment in WSNs. Designing a key distribution/establishment scheme in WSNs is a challenging task due to the limited resources of sensor nodes. Polynomial-based key distribution schemes have been proposed in WSNs to provide a lightweight solution for resource-constraint devices. More importantly, polynomial-based schemes guarantee that a pairwise key exists between two sensors in the WSNs. However, one problem associated with all polynomial-based approaches in WSNs is that they are vulnerable to sensor capture attacks. Specifically, the attacker can compromise the security of the entire network by capturing a fixed number of sensors. In this paper, we propose a novel polynomial-based scheme with a probabilistic security feature that effectively reduces the security risk of sensor-captured attacks and requires minimal memory and computation overhead. Furthermore, our design can be extended to provide hierarchical key management to support data aggregation in WSNs.


Author(s):  
Martin Rublík

Cryptographic key distribution and management is one of the most important steps in the process of securing data by utilizing encryption. Problems related to cryptographic key distribution and management are hard to solve and easy to exploit, and therefore, they are appealing to the attacker. The purpose of this chapter is to introduce the topics of cryptographic key distribution and management, especially with regards to asymmetric keys. The chapter describes how these topics are handled today, what the real-world problems related to cryptographic key distribution and management are, and presents existing solutions as well as future directions in their solving. The authors present the cryptographic key management and distribution problems from a multidisciplinary point of view by looking at its economic, psychological, usability, and technological aspects.


Author(s):  
Vicky Liu ◽  
William Caelli ◽  
Yu-Nien Maggie Chen

An increasing number of countries are faced with an aging population increasingly needing healthcare services. For any e-health information system, the need for increased trust by such clients with potentially little knowledge of any security scheme involved is paramount. In addition notable scalability of any system has become a critical aspect of system design, development and ongoing management. Meanwhile cryptographic systems provide the security provisions needed for confidentiality, authentication, integrity and non-repudiation. Cryptographic key management, however, must be secure, yet efficient and effective in developing an attitude of trust in system users. Digital certificate-based Public Key Infrastructure has long been the technology of choice or availability for information security/assurance; however, there appears to be a notable lack of successful implementations and deployments globally. Moreover, recent issues with associated Certificate Authority security have damaged trust in these schemes. This paper proposes the adoption of a centralised public key registry structure, a non-certificate based scheme, for large scale e-health information systems. The proposed structure removes complex certificate management, revocation and a complex certificate validation structure while maintaining overall system security. Moreover, the registry concept may be easier for both healthcare professionals and patients to understand and trust.


2018 ◽  
Vol 7 (4.6) ◽  
pp. 45
Author(s):  
Ramu Ramu Kuchipudi ◽  
Dr. Ahmed Abdul Moiz Qyser ◽  
Dr. V V S S S Balaram

Key distribution in Wireless sensor networks is crucial whenever they deployed in critical applications. Cryptography is used to protect sensitive information from disclosure. Key management is important component in cryptography. Cryptography is not useful if keys are disclosed to attackers. Designing an efficient key management for sensor network is a difficult task because of scarcity of computing and memory resources. An efficient key distribution approach is proposed by using mobile agent paradigm rather than client server model. The proposed approach will use good features of both symmetric and asymmetric cryptography. Mobile Agents are used to generate public and private key pairs, update keys and revocation of keys. The proposed scheme in the first level will use mobile agents for public key dissemination and in second level sensor nodes can involve in constructing symmetric keys for secure communication through mutual authentication and encryption with those keys. The proposed method is implemented using NS2 Simulator and results are compared with existing similar methods in terms of evaluation parameters like throughput and resiliency. The proposed method is improved when it is compared with similar existing methods. 


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


2000 ◽  
Vol 151 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Stephan Wild-Eck ◽  
Willi Zimmermann

Two large-scale surveys looking at attitudes towards forests, forestry and forest policy in the second half ofthe nineties have been carried out. This work was done on behalf of the Swiss Confederation by the Chair of Forest Policy and Forest Economics of the Federal Institute of Technology (ETH) in Zurich. Not only did the two studies use very different methods, but the results also varied greatly as far as infrastructure and basic conditions were concerned. One of the main differences between the two studies was the fact that the first dealt only with mountainous areas, whereas the second was carried out on the whole Swiss population. The results of the studies reflect these differences:each produced its own specific findings. Where the same (or similar) questions were asked, the answers highlight not only how the attitudes of those questioned differ, but also views that they hold in common. Both surveys showed positive attitudes towards forests in general, as well as a deep-seated appreciation ofthe forest as a recreational area, and a positive approach to tending. Detailed results of the two surveys will be available in the near future.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
JiJi Fan ◽  
Zhong-Zhi Xianyu

Abstract Light fields with spatially varying backgrounds can modulate cosmic preheating, and imprint the nonlinear effects of preheating dynamics at tiny scales on large scale fluctuations. This provides us a unique probe into the preheating era which we dub the “cosmic microscope”. We identify a distinctive effect of preheating on scalar perturbations that turns the Gaussian primordial fluctuations of a light scalar field into square waves, like a diode. The effect manifests itself as local non-Gaussianity. We present a model, “modulated partial preheating”, where this nonlinear effect is consistent with current observations and can be reached by near future cosmic probes.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1422
Author(s):  
Ousama Al Shanaa ◽  
Andrey Rumyantsev ◽  
Elena Sambuk ◽  
Marina Padkina

RNA aptamers are becoming increasingly attractive due to their superior properties. This review discusses the early stages of aptamer research, the main developments in this area, and the latest technologies being developed. The review also highlights the advantages of RNA aptamers in comparison to antibodies, considering the great potential of RNA aptamers and their applications in the near future. In addition, it is shown how RNA aptamers can form endless 3-D structures, giving rise to various structural and functional possibilities. Special attention is paid to the Mango, Spinach and Broccoli fluorescent RNA aptamers, and the advantages of split RNA aptamers are discussed. The review focuses on the importance of creating a platform for the synthesis of RNA nanoparticles in vivo and examines yeast, namely Saccharomyces cerevisiae, as a potential model organism for the production of RNA nanoparticles on a large scale.


Sign in / Sign up

Export Citation Format

Share Document