scholarly journals Safe Light Weight Cipher using Ethernet and Pentatop Number

2019 ◽  
Vol 8 (2) ◽  
pp. 1458-1461 ◽  

Current essential factor in this world to send a sensitive information over the unsecured network like the internet is security. Protection of sensitive data is becoming a major raising problem due to rising technologies. A recent attack on Electronic Mail of CBI shows that attacker’s efficiency rate. Standard cryptographic algorithms can be exploited by the attackers frequently and unable to apply for standard devices because of their energy consumption due to high computation with slow processing. Lightweight cryptography based algorithms can reduce these problems. This paper deals with symmetric key cryptography technique to encrypt the data where the sender and receiver share a common key which can also be called a secret key cryptography. To encrypt and decrypt the data, randomly generated Pentatope Number has used as a key. Next level of security will be provided using EHA (Ethernet Hardware Address or MAC Address) which is globally unique, to provide secure data transmission. The increasing of attacks on related key attacks motivates this. In particular, we investigate the efficiency impact comparatively other standard algorithms and observed that applications do not always use cryptographic algorithms without their intended use.

Author(s):  
Kinjal Raut

Abstract: The internet has revolutionized advancements, it’s conveniences and uses come at the price of new perils. To be safe from being the victim of fraud, theft and other damage security and vigilance is critical. Cryptography plays an important role in securing information and communications using a set of rules, it ensures the integrity of our data. It maintains confidentiality by protecting the privacy of personal information stored in enterprise systems. Hence Encryption is the only way to ensure that your information remains secure while it is stored and being transmitted. Cryptographic Algorithms mathematically maintain the integrity, confidentiality and authenticity of sensitive information by preventing data disclosure, data tampering and repudiation. The three main types of cryptography are Symmetric Key Cryptography, Asymmetric Key Cryptography and Hash Functions. In this Paper, several important algorithms used for encryption and decryption are defined and analysed, the algorithms are DES, AES, ECC, RSA, MD5 Keywords: Cryptography, Encryption, Decryption, AES, DES, ECC, RSA, Blowfish, MD5


Author(s):  
Sabitha S ◽  
Binitha V Nair

Cryptography is an essential and effective method for securing information’s and data. Several symmetric and asymmetric key cryptographic algorithms are used for securing the data. Symmetric key cryptography uses the same key for both encryption and decryption. Asymmetric Key Cryptography also known as public key cryptography uses two different keys – a public key and a private key. The public key is used for encryption and the private key is used for decryption. In this paper, certain asymmetric key algorithms such as RSA, Rabin, Diffie-Hellman, ElGamal and Elliptical curve cryptosystem, their security aspects and the processes involved in design and implementation of these algorithms are examined.


2021 ◽  
Vol 58 (1) ◽  
pp. 3420-3427
Author(s):  
P. A. S. D. Perera, G. S . Wijesiri

The present-day society depends heavily on digital technology where it is used in many applications such as banking and e-commerce transactions, computer passwords, etc. Therefore, it is important to protect information when storing and sharing them. Cryptography is the study of secret writing which applies complex math rules to convert the original message into an incomprehensible form.  Graph theory is applied in the field of cryptography as graphs can be simply converted into matrices There are two approaches of cryptography; symmetric cryptography and asymmetric cryptography. This paper proposes a new connection between graph theory and symmetric cryptography to protect the information from the unauthorized parties. This proposed methodology uses a matrix as the secret key which adds more security to the cryptosystem. It converts the plaintext into several graphs and represents these graphs in their matrix form. Also, this generates several ciphertexts. The size of the resulting ciphertexts are larger than the plaintext size.


2017 ◽  
Vol 10 (2) ◽  
pp. 345-351
Author(s):  
Junestarfield Kynshi ◽  
Deepa Jose

This paper aims to solve the problems of the existing technique of the content based double encryption algorithm using symmetric key cryptography. Simple binary addition, folding method and logical XOR operation are used to encrypt the content of a plaintext as well as the secret key.This algorithm helps to achieve the secure transfer of data throught the network. It solved the problems of the existing algorithm and provides a better solution. The plaintext are encrypted using the above methods and produce a cipher text. The secret key is encrypted and shared through secure network and without knowing the secret key it is difficult to decipher the text. As per expected, enhanced encryption algorithm gives better result than the existing encryption algorithm.


2019 ◽  
Vol 8 (3) ◽  
pp. 3679-3685

Symmetric-key cryptography is a classical cryptography in which both sender and receiver use the same key K to encrypt and decrypt the message. The main challenge between sender and receiver is to agree upon the secret-key which should not be revealed to public. Key management is the major issue in symmetric-key cryptosystem. To avoid these, a novel approach in generating the keystream Ks for any symmetric-key algorithms using U-matrix is proposed in this paper. The advantage of this method is generation of key K from Ks is based on some deterministic procedure which is then applied to DES algorithm and K is not necessarily remembered by both sender and receiver. Further, in each round different key is used as opposed to usage of single key in classical DES. Experimental results clearly show the security is increased when it is compared with classical DES.


Author(s):  
Abha Jadaun ◽  
Satish Kumar Alaria ◽  
Yashika Saini

Internet of things is shortened as IoT. Today IoT is a key and abrogating subject of the specialized and social importance. Results of buyers, things and vehicles, industry based and fundamental segments, sensors, and other everyday items are converged with network of internet and the solid information abilities which guarantee to change the sort in which we work and live. The proposed work demonstrates the implementation of symmetric key lightweight algorithm for secured data transmission of images and text using image encryption system as well as reversible data hiding system. In this paper, implemented symmetric key cryptography for various formats of images, as well as real time image acquisition system has been designed in the form of graphical user interface. Reversible data hiding system has also been designed for secure data transmission system.


Author(s):  
ABDUL RAZZAQUE ◽  
NILESHSINGH V. THAKUR

Image compression scheme proposed by researchers have no consideration of security. Similarly image encryption scheme proposed by the authors have no consideration of image size. In this paper a simultaneous image compression and encryption scheme is discussed. The order of the two processes viz. compression and encryption is EC i.e. image encryption is performed first then the image compression is applied. For image encryption a symmetric key cryptography multiplicative cipher is used. Similarly for compression Discrete Cosine Transform is used. Image Compression is concerned with minimizing the number of bit required to represent an image. The compression can be lossless or lossy. Image Encryption is hiding image from unauthorized access with the help of secret key that key can be private or public.


2015 ◽  
Vol 3 (2) ◽  
pp. 244
Author(s):  
Balajee Maram ◽  
Y Ramesh Kumar ◽  
K Lakshmana Rao

<p>In this research paper, a novel and strong symmetric key cryptography algorithm is proposed. NARSKCA is based on several symmetric cryptographic algorithms. NARSKCA is very simple that uses character converting algorithm, Fibonacci Number Series, Lucas Number series and bitwise XOR. In NARSKCA, 32 files are shared-secret files plays a vital role in this Proposed Algorithm. The Sub-keys are generated from those 32 shared-secret files which are useful in different rounds of Encryption and Decryption Process. The most important feature is the calculation of the final key from the Sub-Keys for each Text-Block. Key Generation, encryption/decryption schemes of NARSKCA are fast and difficult to predict by Cryptanalysts.</p>


Security of data (text, audio, and images) is becoming more complex with the increment in its amount. In order to upsurge the reliability, the captcha (Completely Automated Public Turing test to tell Computers and Humans Apart) is used to ensure authenticity. In contrast, even these captchas can be hacked and security can be easily impeached, aim of these captchas is to identify if the user is genuine or else if it is just a robot trying to spam the system. This paper presents auxiliary hybridization of AES and Blowfish cryptographic algorithms for image encipherment and decipherment. Here, AES is using Blowfish as its subroutine where Blowfish encrypts and decrypts the AES encoded image. This is then handed to AES for second level decryption. Here the image which is to be encrypted is applied to AES algorithm, its output is further used as an input for Blowfish algorithm. Output of this doubly encrypted image is then decrypted in the reverse order of encipherment. This auxiliary hybridization adds security to the image rendering it the capacity to become useful in highly important organizations. Private key cryptography uses single secret key at both, the sender and the receiver end. Using symmetric key cryptographic algorithm for this process makes the complete process fast and more secure in comparison to when asymmetric cryptographic algorithms are used for the same purpose. Moreover, symmetric key cryptographic algorithms are more suitable for larger files and images. These also help in maintaining the confidentiality of the data.


2021 ◽  
Author(s):  
Akansha Singh ◽  
Khushboo Jain

Abstract The main issue for the security of wireless sensor networks (WSNs) is how to allow sensor nodes (SNs) to establish and share cryptographic keys in an energy-efficient, storage-efficient, and authentic manner for their secure data transmission. Furthermost recent studies carried out in this direction is concerned with homogeneous networks in which all sensor has identical characteristics and key administration mechanisms. Although Cluster-based sensor networks have demonstrated better achievements and performance as compared to homogeneous networks because of the several benefits of clustering. This inspired us to propose a secure key-establishment method for cluster-based sensor networks based on symmetric-key cryptography. Since symmetric key cryptography has small energy consumption, they are a great choice to prefer for securing the net-works. Even though symmetric key cryptography has high storage needs, this deficiency can be reduced by using suitable methods—the evaluation of the pro-posed work that the storage needs are reduced along with reduced energy consumption. The work offers a favorable level of security against various intruders and possible security threats and is additionally scalable than the state-of-the-art techniques.


Sign in / Sign up

Export Citation Format

Share Document