scholarly journals Prediction of Geotechnical Properties of Soil using Artificial Intelligence Framework

Author(s):  
Jitendra Khatti ◽  
◽  
Dr. Kamaldeep Singh Grover ◽  

The present research work is carried out to predict the geotechnical properties (consistency limits, OMC, and MDD) of soil using AI technologies, namely regression analysis (RA), support vector machine (SVM), Gaussian process regression (GPR), artificial neural networks (ANNs), and relevance vector machine (RVM). The models of machine learning (SVM, GPR), hybrid learning (RVM), and deep learning (ANNs) are constructed in MATLAB R2020a with different configurations. The models of RA are built using the Data Analysis Tool of Microsoft Excel 2019. The input parameters of AI models are gravel, sand, silt, and clay content. The correlation coefficient is calculated for pair of soil datasets. The correlation shows that sand, silt, and clay content play a vital role in predicting soil's liquid limit and plasticity index. The performance of constructed AI models is compared to determine the optimum performance models. The limited datasets of soil are used in this study. Therefore, artificial neural networks and relevance vector machines could not perform well. Based on the performance of AI models, the Gaussian process regression outperformed the RA, SVM, ANNs, and RVM AI technologies. Hence, the GPR AI approach can predict the geotechnical properties of soil by gravel, sand, silt, and clay content. The Monte-Carlo global sensitivity analysis is also performed, and it is observed that the prediction of geotechnical properties of soil is affected by sand and clay content

Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 500
Author(s):  
László Keresztes ◽  
Evelin Szögi ◽  
Bálint Varga ◽  
Viktor Farkas ◽  
András Perczel ◽  
...  

The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.


2012 ◽  
Vol 16 (8) ◽  
pp. 3061-3074 ◽  
Author(s):  
J. L. Gunnink ◽  
J. H. A. Bosch ◽  
B. Siemon ◽  
B. Roth ◽  
E. Auken

Abstract. Airborne electromagnetic (AEM) methods supply data over large areas in a cost-effective way. We used Artificial Neural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case electrical conductivity, EC, from electrical cone penetration tests) and geological parameters (presence of glacial till), we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring the EC signal from the till but by using ANN we were able to extract subtle and often non-linear, relations in EC that were representative of the presence of the till. The ANN results were interpreted as the probability of having till and showed a good agreement with drilling data. The glacial till is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality.


2018 ◽  
Vol 184 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Gal Amit ◽  
Hanan Datz

Abstract We present here for the first time a fast and reliable automatic algorithm based on artificial neural networks for the anomaly detection of a thermoluminescence dosemeter (TLD) glow curves (GCs), and compare its performance with formerly developed support vector machine method. The GC shape of TLD depends on numerous physical parameters, which may significantly affect it. When integrated into a dosimetry laboratory, this automatic algorithm can classify ‘anomalous’ (having any kind of anomaly) GCs for manual review, and ‘regular’ (acceptable) GCs for automatic analysis. The new algorithm performance is then compared with two kinds of formerly developed support vector machine classifiers—regular and weighted ones—using three different metrics. Results show an impressive accuracy rate of 97% for TLD GCs that are correctly classified to either of the classes.


2012 ◽  
Vol 9 (3) ◽  
pp. 3269-3309 ◽  
Author(s):  
J. L. Gunnink ◽  
J. H. A. Bosch ◽  
B. Siemon ◽  
B. Roth ◽  
E. Auken

Abstract. Airborne Electro Magnetic (EM) methods supply data over large areas in a cost-effective way. We used Artificial Neural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case electrical conductivity, EC, from Electrical Cone Penetration Tests) and geological parameters (presence of glacial till), we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring the EC signal from the till but by using ANN we were able to extract subtle and often non-linear, relations in EC that were representative for the presence of the till. The ANN results were interpreted as the probability of having till and showed a good agreement with drilling data. The glacial till is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality.


Sign in / Sign up

Export Citation Format

Share Document