scholarly journals Energy and Latency Efficient Caching in Mobile Edge Networks: Survey, Solutions, and Challenges

Author(s):  
Lubna Badri Mohammed ◽  
Alagan Anpalagan ◽  
Muhammad Jaseemuddin

<div><div><div><p>Future wireless networks provide research challenges with many fold increase of smart devices and the exponential growth in mobile data traffic. The advent of highly computational and real-time applications cause huge expansion in traffic volume. The emerging need to bring data closer to users and minimizing the traffic off the macrocell base station (MBS) introduces the use of caches at the edge of the networks. Storing most popular files at the edge of mobile edge networks (MENs) in user terminals (UTs) and small base stations (SBSs) caches is a promising approach to the challenges that face data-rich wireless networks. Caching at the mobile UT allows to obtain requested contents directly from its nearby UTs caches through the device-to- device (D2D) communication.</p><p>In this survey article, solutions for mobile edge computing and caching challenges in terms of energy and latency are presented. Caching in MENs and comparisons between different caching techniques in MENs are presented. An illustration of the research in cache development for wireless networks that apply intelligent and learning techniques (ILTs) in a specific domain in their design is presented. We summarize the challenges that face the design of caching system in MENs. Finally, some future research directions are discussed for the development of cache placement and cache access and delivery in MENs.</p></div></div></div>

2021 ◽  
Author(s):  
Lubna Badri Mohammed ◽  
Alagan Anpalagan ◽  
Muhammad Jaseemuddin

<div><div><div><p>Future wireless networks provide research challenges with many fold increase of smart devices and the exponential growth in mobile data traffic. The advent of highly computational and real-time applications cause huge expansion in traffic volume. The emerging need to bring data closer to users and minimizing the traffic off the macrocell base station (MBS) introduces the use of caches at the edge of the networks. Storing most popular files at the edge of mobile edge networks (MENs) in user terminals (UTs) and small base stations (SBSs) caches is a promising approach to the challenges that face data-rich wireless networks. Caching at the mobile UT allows to obtain requested contents directly from its nearby UTs caches through the device-to- device (D2D) communication.</p><p>In this survey article, solutions for mobile edge computing and caching challenges in terms of energy and latency are presented. Caching in MENs and comparisons between different caching techniques in MENs are presented. An illustration of the research in cache development for wireless networks that apply intelligent and learning techniques (ILTs) in a specific domain in their design is presented. We summarize the challenges that face the design of caching system in MENs. Finally, some future research directions are discussed for the development of cache placement and cache access and delivery in MENs.</p></div></div></div>


Telecom IT ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 44-54
Author(s):  
A. Grebenshchikova ◽  
Elagin V.

The paper considers the data traffic based on slicing in a 5g mobile network uplink system. Slicing is a promising technology for the fifth generation of networks that provides optimal quality of QOS services for each specific user or group of users. Data traffic that is processed by cellular networks increases every year. Therefore, we should consider all set of traffic from VoIP to M2M devices. For example, smart devices in the healthcare system transmit big data that is sensitive to latency, but also a video stream that requires minimal latency in certain cases. The paper focuses on the successful processing of traffic through a relay node, donor microstates, and a base station. All traffic is divided into three levels of QoS segmentation: sensitive, less sensitive, and low-sensitivity, using the AnyLogic simulation program. For fifth-generation 5G networks, achieving minimum latency and maximum data transfer speed within QoS is an important implementation condition. Therefore, in this paper, using simulation modeling, the main and possible results of each segment in the new generation of mobile networks are obtained. The use of a relay node in conjunction with micro-stations can ensure optimal station load and successful data processing. Also, the solutions outlined in this paper will allow you to identify a number of areas for future research to assess possible ways to design new mobile networks, or improve existing ones.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Kozo Satoda ◽  
Eiji Takahashi ◽  
Takeo Onishi ◽  
Takayuki Suzuki ◽  
Daisuke Ohta ◽  
...  

Large demands for mobile traffic subject base stations to frequent short-term and sharp peak loads. Recent analysis of data traffic on commercial mobile networks reported that the traffic peaks can be reduced by an average of 40% without compromising the quality of experience provided to the end user, if a peak load can be shifted for at most 20 s. To reduce peak traffic, we previously proposed a method for off-peak data transfer, with which user equipment (UE) autonomously delays receiving data, and a peak load on a base station can be shifted. In terms of off-peak transfer of data, a significant problem is determining how each UE estimates available throughput. In this paper we propose a method of passively estimating available throughput of each UE. We evaluated the effectiveness of the proposed method through experiments on experimental and commercial LTE networks. The results indicate that our method obtains more than a 0.7 correlation between actual available throughput and estimated throughput.


2017 ◽  
Vol 63 (2) ◽  
pp. 187-194 ◽  
Author(s):  
Weston Mwashita ◽  
Marcel Ohanga Odhiambo

Abstract As more and more Base Stations (BSs) are being deployed by mobile operators to meet the ever increasing data traffic, solutions have to be found to try and reduce BS energy consumption to make the BSs more energy efficient and to reduce the mobile networks’ operational expenditure (OPEX) and carbon dioxide emissions. In this paper, a BS sleeping technology deployable in heterogeneous networks (HetNets) is proposed. The proposed scheme is validated by using extensive OMNeT++/SimuLTE simulations. From the simulations, it is shown that some lightly loaded micro BSs can be put to sleep in a HetNet when the network traffic is very low without compromising the QoS of the mobile network.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Lincan Li ◽  
Chiew Foong Kwong ◽  
Qianyu Liu ◽  
Pushpendu Kar ◽  
Saeid Pourroostaei Ardakani

Mobile edge caching is an emerging approach to manage high mobile data traffic in fifth-generation wireless networks that reduces content access latency and offloading data traffic of backhaul links. This paper proposes a novel cooperative caching policy based on long short-term memory (LSTM) neural networks considering the characteristics between the features of the heterogeneous layers and the user moving speed. Specifically, LSTM is applied to predict content popularity. Size-weighted content popularity is utilised to balance the impact of the predicted content popularity and content size. We also consider the moving speeds of mobile users and introduce a two-level caching architecture consisting of several small base stations (SBSs) and macro base stations (MBSs). To avoid content requests of fast-moving users affecting the content popularity distribution of the SBS since fast-moving users frequently handover among SBSs, fast-moving users are served by MBSs no matter which SBS they are in. SBSs serve low-speed users, and SBSs in the same cluster can communicate with one another. The simulation results show that compared to common cache methods, for example, the least frequently used and least recently used methods, our proposed policy is at least 8.9% lower and 6.8% higher in terms of the average content access latency and offloading ratio, respectively.


2014 ◽  
Vol 12 (7) ◽  
pp. 3712-3718
Author(s):  
Gulista Khan ◽  
Wajid Ali ◽  
Swati Arya ◽  
Vaibhav Sharma

Wireless networks play a crucial role in the communication systems nowadays. Wireless networks are being increasingly used in the communication among devices of the most varied types and sizes. User mobility, affordability, flexibility and ease of use are few of many reasons for making them very appealing to new applications and more users everyday. A Wireless Sensor Network (WSN) is composed of sensor nodes spread over the field to sense the data. The sensed data must be gathered & transmitted to Base Station (BS) for end user queries. The used sensor nodes being in- expensive having low computation power & limited energy so are not as much reliable as their expensive macro sensor counter parts but their size and cost enable hundred to thousand of micro sensors to achieve high quality fault tolerant system. In an environment where in each round all sensor nodes have to send data to base station; it is required to effectively utilize energy of sensor nodes so as to increase the life- time of the system. The use of data aggregation & fusion as proposed in LEACH increases system lifetime by a factor of 8 as compared to conventional routing protocols. In this work, our main focus is the static sensors are randomly selected and the base stations have their information all a priori. Basically, the sensors are in direct communication range of each other and can transmit to and receive from the base station. The nodes periodically sense the environment and have always data to send in each round of communication. The nodes fuse/ aggregate the data they receive from the others with their own data, and produce only one packet regardless of how many packets they receive. The problem is to find a routing scheme or an efficient protocol to deliver data packets collected from sensor nodes to the base station. It maximizes the lifetime of the sensor network under the system model given above. However, the definition of quality of service of the sensor network provides is not specified. Secondly, where the nodes are densely deployed, the quality of the system is affected as soon as a significant amount of nodes die, since adjacent nodes record identical or related data. In this case, the lifetime of the network is the time elapsed until half of the nodes or some specified portion of the nodes die. In general terms, the time in rounds where the last node depletes all of its energy defines the lifetime of the overall sensor network. Taking these different possible requirements under consideration, our work provides a proper timing of all deaths for all algorithms in detail as well as chooses the shortest possible path for communication with better memory management scheme and leaves the decision which one to choose to system designers.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sandi Rahmadika ◽  
Muhammad Firdaus ◽  
Seolah Jang ◽  
Kyung-Hyune Rhee

Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and federated learning (FL) to produce better services on wireless networks. In this paper, we propose an intelligent system integrating blockchain technologies, 5G ENs, and FL to create an efficient and secure framework for transactions. FL enables user equipment (UE) to train the artificial intelligence model without exposing the UE’s valuable data to the public, or to the model providers. Furthermore, the blockchain is an immutable data approach that can be leveraged for FL across 5G ENs and beyond. The recorded transactions cannot be altered maliciously, and they remain unchanged by design. We further propose a dynamic authentication protocol for UE to interact with a diverse base station. We apply blockchain as a reward mechanism in FL to enable computational offloading in wireless networks. Additionally, we implement and investigate blockchain technology for FL in 5G UE.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 299 ◽  
Author(s):  
Muhammad Asif ◽  
Shafi Khan ◽  
Rashid Ahmad ◽  
Dhananjay Singh

In recent years, global mobile data traffic has seen an unprecedented increase. This is due to worldwide usage of smart devices, availability of fast internet connections, and the popularity of social media. The Mobile Network Operators (MNOs) are, therefore, facing problems in handling this huge traffic flow. Each type of traffic, including real-time video, audio, and text has its own Quality of Services (QoS) requirements which, if not met, may cause a sufficient loss of profit. Offloading of these traffics can be made more efficient so that values of QoS parameters are enhanced. In this work, we propose an incentive-based game-theoretic frame work for downloading data. The download of each type of data will get an incentive determined by the two-stage Stackelberg game. We model the communication among single Mobile Base Station (MBS) and multiple Access Points (APs) in a crowded metropolitan environment. The leader offers an economic incentive based on the traffic type and followers respond to the incentive and offload traffic accordingly. The model optimizes strategies of both the MBS and APs in order to make the best use of their utilities. For the analysis, we have used a combination of analytical and experimental methods. The numerical outcome characterized a direct process of the best possible offloading ratio and legalized the efficiency of the proposed game. Optimal incentives and optimal offloading was the achievement of our proposed game-theoretic approach. We have implemented the model in MATLAB, and the experimental results show a maximum payoff was achieved and the proposed scheme achieved Nash Equilibria.


Sign in / Sign up

Export Citation Format

Share Document