scholarly journals Renewable Energy-Enabled Cellular Networks

Author(s):  
Young-Chai Ko ◽  
Kug-Jin Jung ◽  
Ki Hong Park ◽  
Mohamed-Slim Alouini

<div> <div> <div> <p>Renewable energy (RE)-powered base stations (BSs) have been considered as an attractive solution to address the exponential increasing energy demand in cellular networks while decreasing carbon dioxide (CO2) emissions. For the regions where reliable power grids are insufficient and infeasible to deploy, such as aerial platforms and harsh environments, RE has been an alternative power source for BSs. In this survey paper, we provide an overview of RE-enabled cellular networks, detailing their analysis, classification, and related works. First, we introduce the key components of RE-powered BSs along with their frequently adopted models. Second, we analyze the proposed strategies and design issues for RE-powered BSs that can be incorporated into cellular networks and categorize them into several groups to provide a good grasp. Third, we introduce feasibility studies on RE-powered BSs based on the recent literature. Fourth, we investigate RE-powered network components other than terrestrial BSs to address potential issues regarding RE-enabled networks. Finally, we suggest future research directions and conclusions. </p><p><br></p> </div> </div> </div>

2021 ◽  
Author(s):  
Young-Chai Ko ◽  
Kug-Jin Jung ◽  
Ki Hong Park ◽  
Mohamed-Slim Alouini

<div> <div> <div> <p>Renewable energy (RE)-powered base stations (BSs) have been considered as an attractive solution to address the exponential increasing energy demand in cellular networks while decreasing carbon dioxide (CO2) emissions. For the regions where reliable power grids are insufficient and infeasible to deploy, such as aerial platforms and harsh environments, RE has been an alternative power source for BSs. In this survey paper, we provide an overview of RE-enabled cellular networks, detailing their analysis, classification, and related works. First, we introduce the key components of RE-powered BSs along with their frequently adopted models. Second, we analyze the proposed strategies and design issues for RE-powered BSs that can be incorporated into cellular networks and categorize them into several groups to provide a good grasp. Third, we introduce feasibility studies on RE-powered BSs based on the recent literature. Fourth, we investigate RE-powered network components other than terrestrial BSs to address potential issues regarding RE-enabled networks. Finally, we suggest future research directions and conclusions. </p><p><br></p> </div> </div> </div>


Author(s):  
Atmonobudi Soebagio ◽  
Bambang Widodo

Indonesia is blessed with abundant renewable energy resources. Nevertheless, they have only been used to cover about 5% of the total national energy demand.   To optimize their utilization, the government has to make and implement a policy that will encourage PLN costumers to help increase their on-grid power supply capacity. This policy will provide benefits for islands that are already equipped with PLN power grids. This paper uses Solar Power Plants and household costumers as models to calculate potential on-grid power increase which can be contributed by PLN costumers. A two-way power meter is used to replace the currently used one. This model will be applied to the  conventional grid to demonstrate the compatibility that show how it is applicable even without upgrading the conventional grid to become   smart grid system. The result shows that customers can participate significantly through the flow of their excess energy to grid.


Author(s):  
Dimosthenis Verginadis ◽  
Athanasios Karlis

Background: The scope of this paper is to study the energy trading in microgrids. Microgrids are low voltage or medium voltage distribution networks, which consist of energy storage systems, electric loads, e.g. electric vehicles and Renewable Energy Sources (RES). Methods: Legacy energy grids are being transformed by the introduction of small to medium sized individual or cooperative, mostly RES invested energy producers and prosumers. Electric vehicles penetrate the market and modern power grids integrate them as ancillary services providers when there are peak domestic loads, as well as in order to balance grid voltage aiming to increase system reliability, compensating for renewable energy sources’ intermittency and volatility in energy production. Results: An elaborate management algorithm is proposed in this paper, to balance demand and local renewable energy sources microgrid supply. Conclusion: Finally, the results of simulations of different scenarios, including economic parameters and proposals for future research are presented.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3124 ◽  
Author(s):  
Lucian Mihet-Popa ◽  
Sergio Saponara

This survey paper reviews recent trends in green vehicle electrification and digitalization, as part of a special section on “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid”, led by the authors. First, the energy demand and emissions of electric vehicles (EVs) are reviewed, including the analysis of the trends of battery technology and of the recharging issues considering the characteristics of the power grid. Solutions to integrate EV electricity demand in power grids are also proposed. Integrated electric/electronic (E/E) architectures for hybrid EVs (HEVs) and full EVs are discussed, detailing innovations emerging for all components (power converters, electric machines, batteries, and battery-management-systems). 48 V HEVs are emerging as the most promising solution for the short-term electrification of current vehicles based on internal combustion engines. The increased digitalization and connectivity of electrified cars is posing cyber-security issues that are discussed in detail, together with some countermeasures to mitigate them, thus tracing the path for future on-board computing and control platforms.


2021 ◽  
Author(s):  
V Kalpana ◽  
Divyendu Kumar Mishra ◽  
K. Chanthirasekaran ◽  
Anandakumar Haldorai ◽  
Srigitha. S. Nath ◽  
...  

Abstract The increasing data demand in recent years has resulted in a considerable rise in heterogeneous cellular network energy usage. Advances in heterogeneous cellular networks with renewable energy supplied from base stations offer the cellular communications sector interesting options. Rising energy consumption, fuelled by huge growth in user count as well as usage of data, has emerged as the most pressing challenge for operators in fulfilling cost-cutting and environmental-impact objectives. The use of minimum power relay stations or base stations in conventional microcells is intended to lower cellular network's total energy usage. We examine the reasons, difficulties, and techniques for addressing the energy cost reduction issue for such renewable heterogeneous networks in this paper. Because of the variety of renewable energy as well as mobile traffic, then the issue related to a reduction in energy cost necessitates both spatial and temporal resource allotment optimization. In this paper, we proposed a new technique for reducing the energy consumption cost using the optimal time constraint algorithmic approach. We demonstrate that the proposed method has time as well as space complexity. Experimental simulations on actual databases with synthetic costs are used to confirm the usefulness and efficacy of our method.


2020 ◽  
pp. 47-59

Social networks and mobile applications tend to enhance the need for high-quality content access. To meet the growing demand for data services in 5G cellular networks, it is important to develop effective content caching and distribution techniques, to reduce redundant data transmission and thereby improve network efficiency significantly. It is anticipated that energy harvesting and self-powered Small Base Stations' (SBS) are the rudimentary constituents of next-generation cellular networks. However, uncertainties in harvested energy are the primary reasons to opt for energy-efficient (EE) power control schemes to reduce SBS energy consumption and ensure the quality of services for users. Using edge collaborative caching, such EE design can also be achievable via the use of the content cache, decreasing the usage of capacity limited SBSs backhaul and reducing energy utilisation. Renewable energy (RE) harvesting technologies can be leveraged to manage the huge power demands of cellular networks. To reduce carbon footprint and improve energy efficiency, we tailored a more practical approach and propose green caching mechanisms for content distribution that utilise the content caching and renewable energy concept. Simulation results and analysis provide key insights that the proposed caching scheme brings a substantial improvement regarding content availability, cache storage capacity at the edge of cellular networks, enhances energy efficiency, and increases cache collaboration time up to 24%. Furthermore, self-powered base stations and energy harvesting are an ultimate part of next-generation wireless networks, particularly in terms of optimum economic sustainability and green energy in developing countries for the evolution of mobile networks.


Author(s):  
Simon Wright ◽  
Mark Frost ◽  
Alfred Wong ◽  
Kevin A Parton

AAs the global energy market undergoes a wholesale transformation accelerated by the need to decarbonise, a rapid transition to renewable energy and the mass deployment of distributed energy resources, autonomous energy networks or microgrids are emerging as an attractive mechanism for the delivery of electricity to end users. Yet in Australia, at least, relatively little is known about key aspects of microgrids that are fundamental to their successful deployment, not least the more commercial and economic elements rather than the purely technical. Drawing on the extant global literature on microgrids, this paper explores the most important of these aspects including business models, ownership and investment. Identifying the ambiguity, inconsistency and uncertainty evident in many of the feasibility studies currently in train across Australia, this paper highlights specific areas for future research that need to be addressed if the full potential of microgrids is to be realised in the context of a global energy transition both domestically and internationally.


2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1988
Author(s):  
Ioannis E. Kosmadakis ◽  
Costas Elmasides

Electricity supply in nonelectrified areas can be covered by distributed renewable energy systems. The main disadvantage of these systems is the intermittent and often unpredictable nature of renewable energy sources. Moreover, the temporal distribution of renewable energy may not match that of energy demand. Systems that combine photovoltaic modules with electrical energy storage (EES) can eliminate the above disadvantages. However, the adoption of such solutions is often financially prohibitive. Therefore, all parameters that lead to a functionally reliable and self-sufficient power generation system should be carefully considered during the design phase of such systems. This study proposes a sizing method for off-grid electrification systems consisting of photovoltaics (PV), batteries, and a diesel generator set. The method is based on the optimal number of PV panels and battery energy capacity whilst minimizing the levelized cost of electricity (LCOE) for a period of 25 years. Validations against a synthesized load profile produced grid-independent systems backed by different accumulator technologies, with LCOEs ranging from 0.34 EUR/kWh to 0.46 EUR/kWh. The applied algorithm emphasizes a parameter of useful energy as a key output parameter for which the solar harvest is maximized in parallel with the minimization of the LCOE.


Sign in / Sign up

Export Citation Format

Share Document