scholarly journals Shaped and multiple beams using planar phased arrays

Author(s):  
Prasad Sankaravel ◽  
M. Meenakshi ◽  
P. Hanumantha Rao

Shaped and multiple beams using planar phased arrays. This paper presents a new synthesis and computation method to generate user-specified multiple beams and shaped beams in any arbitrary 3D space. The computation method can generate independently controllable simultaneous multiple beams with arbitrary peak powers. This method is extended to generate arbitrarily shaped beams, using a combination of optimally placed multiple beams at appropriate locations with specific power ratios.<br>

2021 ◽  
Author(s):  
Prasad Sankaravel ◽  
M. Meenakshi ◽  
P. Hanumantha Rao

Shaped and multiple beams using planar phased arrays. This paper presents a new synthesis and computation method to generate user-specified multiple beams and shaped beams in any arbitrary 3D space. The computation method can generate independently controllable simultaneous multiple beams with arbitrary peak powers. This method is extended to generate arbitrarily shaped beams, using a combination of optimally placed multiple beams at appropriate locations with specific power ratios.<br>


Author(s):  
Karl F. Warnick ◽  
Rob Maaskant ◽  
Marianna V. Ivashina ◽  
David B. Davidson ◽  
Brian D. Jeffs

1996 ◽  
Vol 61 (26) ◽  
pp. 9635-9635
Author(s):  
Alicia Boto ◽  
Rosendo Hernández ◽  
Ernesto Suárez ◽  
Carmen Betancor ◽  
María S. Rodríguez

Author(s):  
Xiaolu Zeng ◽  
Alan Hedge ◽  
Francois Guimbretiere
Keyword(s):  

2009 ◽  
Author(s):  
F. Jacob Seagull ◽  
Peter Miller ◽  
Ivan George ◽  
Paul Mlyniec ◽  
Adrian Park
Keyword(s):  
3D Image ◽  

2006 ◽  
Vol 133 ◽  
pp. 201-204
Author(s):  
J.-M. Clarisse ◽  
C. Boudesocque-Dubois ◽  
J.-P. Leidinger ◽  
J.-L. Willien

Author(s):  
D Flöry ◽  
C Ginthoer ◽  
J Roeper-Kelmayr ◽  
A Doerfler ◽  
WG Bradley ◽  
...  
Keyword(s):  

Synlett ◽  
1991 ◽  
Vol 1991 (04) ◽  
pp. 356-358 ◽  
Author(s):  
Bernd Burkhart ◽  
Steffen Krill ◽  
Yoshinori Okano ◽  
Wataru Ando ◽  
Manfred Regitz
Keyword(s):  

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


Sign in / Sign up

Export Citation Format

Share Document