scholarly journals A Dynamic Compact Model for Ferroelectric Capacitance

Author(s):  
Lining Zhang

A non-quasi-static model for ferroelectric capacitance is developed in this letter. A state transition in the voltage and time domains between two polarization states is formulated first. The quasi-static model is derived from the state transition of voltage domain, and supports the minor loops. Different from the Preisach model, an initial state is supported, and the modulated coercive voltages are responsible for minor loops. The non-quasi -static model is then derived with the state transition in the time domain, similar to a relaxation approximation in MOSFET modeling. The non-quasi-static model reproduces the saturation loop, minor loops, the frequency-dependent characteristics of measured ferroelectric capacitances, with their origins explained from polarization switching relaxation. The pulse width dependent switching is well reproduced with the model.

2021 ◽  
Author(s):  
Lining Zhang

A non-quasi-static model for ferroelectric capacitance is developed in this letter. A state transition in the voltage and time domains between two polarization states is formulated first. The quasi-static model is derived from the state transition of voltage domain, and supports the minor loops. Different from the Preisach model, an initial state is supported, and the modulated coercive voltages are responsible for minor loops. The non-quasi -static model is then derived with the state transition in the time domain, similar to a relaxation approximation in MOSFET modeling. The non-quasi-static model reproduces the saturation loop, minor loops, the frequency-dependent characteristics of measured ferroelectric capacitances, with their origins explained from polarization switching relaxation. The pulse width dependent switching is well reproduced with the model.


Author(s):  
Akira Nishimura

Reversible data hiding is a technique whereby hidden data are embedded in host data in such a way that the host data consistency is perfectly preserved and the host data are restored when extracting the hidden data. This chapter introduces basic algorithms for reversible data hiding, histogram shifting, histogram expansion, and compression. This chapter also proposes and evaluates two reversible data hiding methods, i.e., hiding data in the frequency-domain using integer Discrete Cosine Transform (DCT) and modified DCT and hiding in the time domain using linear prediction and error expansion. As no location map is required to prevent amplitude overflow, the proposed method in the time domain achieves a storage capacity of nearly 1 bit per sample of payload data. The proposed methods are evaluated by the payload amount, objective quality degradation of stego signal, and payload concealment.


2020 ◽  
Author(s):  
Gopikrishna Madanan ◽  
Deepti Das Krishna

The performance of printed wideband antennas has to be optimized both in frequency and time domains, to qualify for UWB applications. This is especially true in multi-resonant antenna topologies where the excitation of different modes can change phase centers and radiation patterns with frequency. The study presented in this chapter intends to demonstrate the simulation and experimental design for the time domain characterization of UWB antennas. Modeling the antenna as a linear time-invariant system with transfer function and impulse response, distortion caused to a nanosecond pulse is analyzed. Two planar monopole antenna designs are considered for the comparative study: the SQMA and RMA. SQMA is a traditional CPW-fed monopole design with ground modifications for ultra wide-bandwidth. RMA is a rectangular CPW-fed monopole with an impedance transformer arrangement at the antenna feed. RMA maintains constant impedance over the entire UWB and contributes towards maintaining uniformity in the radiation patterns over the entire frequency band by its design. Transfer function measurements are performed for both the azimuthal and elevation planes and the impulse responses are deduced by performing IFFT. Parameters such as FWHM and ringing are computed from the impulse response for the performance comparison. To evaluate the influence of the antenna geometry on a transmitted/received pulse, the impulse responses are convoluted with a standard UWB pulse. The time-domain distortion for the designs is then compared by computing the Fidelity parameter.


Author(s):  
J-C Lee

A hydraulic attenuator has been used in hydraulic active suspension systems of automotive vehicles to reduce high amplitude ripple pressure of a pump. The hydraulic attenuator considered in this study is so highly non-linear and of high order that the analysis in the time domain has been performed infrequently, although the frequency response analysis with the transfer matrix method was applicable. In this paper, a state space representation of the dynamics for a hydraulic attenuator is presented, utilizing the electrical analogy. The results of the experiment are compared with those of the simulation to validate the state space model proposed. The comparison reveals that the state space model proposed is practically applicable for estimating the dynamic responses of the hydraulic attenuator in the time domain.


2011 ◽  
Vol 243-249 ◽  
pp. 4733-4740 ◽  
Author(s):  
Gang Jun Zhai ◽  
Dong Yang Tang ◽  
Hong Feng Xiong

Taking a deep-water semi-submersible drilling platform and its mooring system which will be used in South China Sea area as an example, the motion responses of this platform in the frequency and time domains are analysed. In the frequency domain, the three-dimensional potential flow theory is emploied to calculate, the response function of six degrees of freedom and some hydrodynamic parameters, such as additional mass and additional damping. In the time domain, the non-linear time-domain coupling analytical method is used to calculate the motion responses of this platform under the action of wind and waves. Then according to the time series of motion response, the influence of the Jonswap spectrum’s parameters, including wave height and peak factors on the platform’s heave response is analysed.This numerical simulation results provides an reference for the target platform’s actual construction.


1992 ◽  
Vol 2 (4) ◽  
pp. 615-620
Author(s):  
G. W. Series
Keyword(s):  

2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


Sign in / Sign up

Export Citation Format

Share Document