scholarly journals Enabling Intelligence in Spectrum Sharing

Author(s):  
Chi-Jen Wu

We argue that the capital expenditures made by an individual mobile network operator is extremely high and risky. Also, radio spectrum sharing still lacks intelligence in the current architecture of mobile networks and needs to be rethought. We propose that the goal for a disruptive innovation, in the future mobile network architecture, that shall be able to free mobile network operators from having to hold spectrum licenses and natively enable intelligent radio spectrum sharing among multiple mobile network operators. On the basis of the design principles, the duty of a single mobile network operator is split into two roles, one focuses on infrastructure development, the other only contains authorizations on the radio spectrum usage. We introduce a new role to the mobile network architecture, named Spectrum Trader, is a primary broker for spectrum trading, and it is used to coordinate with the demand-side requests and the supply-side resources to drive demand in a \emph{real-time bidding} manner. We also introduce a spectrum embedding technique that shall enable efficient and intelligent spectrum allocation by recommending the right spectrum bands based on user scenario. Finally, several significant challenges that need to be addressed in practical deployment are investigated.

2022 ◽  
Author(s):  
Chi-Jen Wu

We argue that the capital expenditures made by an individual mobile network operator is extremely high and risky. Also, radio spectrum sharing still lacks intelligence in the current architecture of mobile networks and needs to be rethought. We propose that the goal for a disruptive innovation, in the future mobile network architecture, that shall be able to free mobile network operators from having to hold spectrum licenses and natively enable intelligent radio spectrum sharing among multiple mobile network operators. On the basis of the design principles, the duty of a single mobile network operator is split into two roles, one focuses on infrastructure development, the other only contains authorizations on the radio spectrum usage. We introduce a new role to the mobile network architecture, named Spectrum Trader, is a primary broker for spectrum trading, and it is used to coordinate with the demand-side requests and the supply-side resources to drive demand in a \emph{real-time bidding} manner. We also introduce a spectrum embedding technique that shall enable efficient and intelligent spectrum allocation by recommending the right spectrum bands based on user scenario. Finally, several significant challenges that need to be addressed in practical deployment are investigated.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4215
Author(s):  
Gordana Barb ◽  
Florin Alexa ◽  
Marius Otesteanu

5G is the next mobile generation, already being deployed in some countries. It is expected to revolutionize our society, having extremely high target requirements. The use of spectrum is, therefore, tremendously important, as it is a limited and expensive resource. A solution for the spectrum efficiency consists of the use of dynamic spectrum sharing, where an operator can share the spectrum between two different technologies. In this paper, we studied the concept of dynamic spectrum sharing between LTE and 5G New Radio. We presented a solution that allows operators to offer both LTE and New Radio services using the same frequency bands, although in an interleaved mode. We evaluated the performance, in terms of throughput, of a communication system using the dynamic spectrum sharing feature. The results obtained led to the conclusion that using the dynamic spectrum sharing comes with a compromise of a maximum 25% loss on throughput. Nevertheless, the decrease is not that substantial, as the mobile network operator does not need to buy an additional 15 MHz of bandwidth, using the already existing bandwidth of LTE to offer 5G services, leading to cost reduction and an increase in spectrum efficiency.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zhaleh Sadreddini ◽  
Pavel Masek ◽  
Tugrul Cavdar ◽  
Aleksandr Ometov ◽  
Jiri Hosek ◽  
...  

Owing to a steadily increasing demand for efficient spectrum utilization as part of the fifth-generation (5G) cellular concept, it becomes crucial to revise the existing radio spectrum management techniques and provide more flexible solutions for the corresponding challenges. A new wave of spectrum policy reforms can thus be envisaged by producing a paradigm shift from static to dynamic orchestration of shared resources. The emerging Licensed Shared Access (LSA) regulatory framework enables flexible spectrum sharing between a limited number of users that access the same frequency bands, while guaranteeing better interference mitigation. In this work, an advanced user satisfaction-aware spectrum management strategy for dynamic LSA management in 5G networks is proposed to balance both the connected user satisfaction and the Mobile Network Operator (MNO) resource utilization. The approach is based on the MNO decision policy that combines both pricing and rejection rules in the implemented processes. Our study offers a classification built over several types of users, different corresponding attributes, and a number of MNO’s decision scenarios. Our investigations are built on Criteria-Based Resource Management (CBRM) framework, which has been specifically designed to facilitate dynamic LSA management in 5G mobile networks. To verify the proposed model, the results (spectrum utilization, estimated Secondary User price for the future connection, and user selection methodology in case of user rejection process) are validated numerically as we yield important conclusions on the applicability of our approach, which may offer valuable guidelines for efficient radio spectrum management in highly dynamic and heterogeneous 5G environments.


2020 ◽  
Vol 1 (1) ◽  
pp. 141-157
Author(s):  
Brunilde Sanso ◽  
Lorela Cano ◽  
Antonio Capone

Infrastructure sharing for mobile networks has been a prolific research topic for more than three decades now. The key driver for Mobile Network Operators to share their network infrastructure is cost reduction. Spectrum sharing is often studied alongside infrastructure sharing although on its own it is a vast research topic outside the scope of this survey. Instead, in this survey we aim to provide a complete picture of infrastructure sharing both over time and in terms of research branches that have stemmed from it such as performance evaluation, resource management etc. We also put an emphasis on the relation between infrastructure sharing and the decoupling of infrastructure from services, wireless network virtualization and multi-tenancy in 5G networks. Such a relation reflects the evolution of infrastructure sharing over time and how it has become a commercial reality in the context of 5G.


2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


Author(s):  
Andra Lutu ◽  
Diego Perino ◽  
Marcelo Bagnulo ◽  
Enrique Frias-Martinez ◽  
Javad Khangosstar

Sign in / Sign up

Export Citation Format

Share Document