Automatic Deep Learning-Based Consolidation/Collapse Classification in Lung Ultrasound Images for COVID-19 Induced Pneumonia

Author(s):  
Nabeel Durrani ◽  
Damjan Vukovic ◽  
Maria Antico ◽  
Jeroen van der Burgt ◽  
Ruud JG van van Sloun ◽  
...  

<div>Our automated deep learning-based approach identifies consolidation/collapse in LUS images to aid in the diagnosis of late stages of COVID-19 induced pneumonia, where consolidation/collapse is one of the possible associated pathologies. A common challenge in training such models is that annotating each frame of an ultrasound video requires high labelling effort. This effort in practice becomes prohibitive for large ultrasound datasets. To understand the impact of various degrees of labelling precision, we compare labelling strategies to train fully supervised models (frame-based method, higher labelling effort) and inaccurately supervised models (video-based methods, lower labelling effort), both of which yield binary predictions for LUS videos on a frame-by-frame level. We moreover introduce a novel sampled quaternary method which randomly samples only 10% of the LUS video frames and subsequently assigns (ordinal) categorical labels to all frames in the video based on the fraction of positively annotated samples. This method outperformed the inaccurately supervised video-based method of our previous work on pleural effusions. More surprisingly, this method outperformed the supervised frame-based approach with respect to metrics such as precision-recall area under curve (PR-AUC) and F1 score that are suitable for the class imbalance scenario of our dataset despite being a form of inaccurate learning. This may be due to the combination of a significantly smaller data set size compared to our previous work and the higher complexity of consolidation/collapse compared to pleural effusion, two factors which contribute to label noise and overfitting; specifically, we argue that our video-based method is more robust with respect to label noise and mitigates overfitting in a manner similar to label smoothing. Using clinical expert feedback, separate criteria were developed to exclude data from the training and test sets respectively for our ten-fold cross validation results, which resulted in a PR-AUC score of 73% and an accuracy of 89%. While the efficacy of our classifier using the sampled quaternary method must be verified on a larger consolidation/collapse dataset, when considering the complexity of the pathology, our proposed classifier using the sampled quaternary video-based method is clinically comparable with trained experts and improves over the video-based method of our previous work on pleural effusions.</div>

2022 ◽  
Author(s):  
Nabeel Durrani ◽  
Damjan Vukovic ◽  
Maria Antico ◽  
Jeroen van der Burgt ◽  
Ruud JG van van Sloun ◽  
...  

<div>Our automated deep learning-based approach identifies consolidation/collapse in LUS images to aid in the diagnosis of late stages of COVID-19 induced pneumonia, where consolidation/collapse is one of the possible associated pathologies. A common challenge in training such models is that annotating each frame of an ultrasound video requires high labelling effort. This effort in practice becomes prohibitive for large ultrasound datasets. To understand the impact of various degrees of labelling precision, we compare labelling strategies to train fully supervised models (frame-based method, higher labelling effort) and inaccurately supervised models (video-based methods, lower labelling effort), both of which yield binary predictions for LUS videos on a frame-by-frame level. We moreover introduce a novel sampled quaternary method which randomly samples only 10% of the LUS video frames and subsequently assigns (ordinal) categorical labels to all frames in the video based on the fraction of positively annotated samples. This method outperformed the inaccurately supervised video-based method of our previous work on pleural effusions. More surprisingly, this method outperformed the supervised frame-based approach with respect to metrics such as precision-recall area under curve (PR-AUC) and F1 score that are suitable for the class imbalance scenario of our dataset despite being a form of inaccurate learning. This may be due to the combination of a significantly smaller data set size compared to our previous work and the higher complexity of consolidation/collapse compared to pleural effusion, two factors which contribute to label noise and overfitting; specifically, we argue that our video-based method is more robust with respect to label noise and mitigates overfitting in a manner similar to label smoothing. Using clinical expert feedback, separate criteria were developed to exclude data from the training and test sets respectively for our ten-fold cross validation results, which resulted in a PR-AUC score of 73% and an accuracy of 89%. While the efficacy of our classifier using the sampled quaternary method must be verified on a larger consolidation/collapse dataset, when considering the complexity of the pathology, our proposed classifier using the sampled quaternary video-based method is clinically comparable with trained experts and improves over the video-based method of our previous work on pleural effusions.</div>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yahya Albalawi ◽  
Jim Buckley ◽  
Nikola S. Nikolov

AbstractThis paper presents a comprehensive evaluation of data pre-processing and word embedding techniques in the context of Arabic document classification in the domain of health-related communication on social media. We evaluate 26 text pre-processings applied to Arabic tweets within the process of training a classifier to identify health-related tweets. For this task we use the (traditional) machine learning classifiers KNN, SVM, Multinomial NB and Logistic Regression. Furthermore, we report experimental results with the deep learning architectures BLSTM and CNN for the same text classification problem. Since word embeddings are more typically used as the input layer in deep networks, in the deep learning experiments we evaluate several state-of-the-art pre-trained word embeddings with the same text pre-processing applied. To achieve these goals, we use two data sets: one for both training and testing, and another for testing the generality of our models only. Our results point to the conclusion that only four out of the 26 pre-processings improve the classification accuracy significantly. For the first data set of Arabic tweets, we found that Mazajak CBOW pre-trained word embeddings as the input to a BLSTM deep network led to the most accurate classifier with F1 score of 89.7%. For the second data set, Mazajak Skip-Gram pre-trained word embeddings as the input to BLSTM led to the most accurate model with F1 score of 75.2% and accuracy of 90.7% compared to F1 score of 90.8% achieved by Mazajak CBOW for the same architecture but with lower accuracy of 70.89%. Our results also show that the performance of the best of the traditional classifier we trained is comparable to the deep learning methods on the first dataset, but significantly worse on the second dataset.


2019 ◽  
Vol 11 (4) ◽  
pp. 451-467
Author(s):  
Miroslav Nemčok

AbstractParties can not only actively adjust the electoral rules to reach more favourable outcomes, as is most often recognized in political science, but they also passively create an environment that systematically influences electoral competition. This link is theorized and included in the wider framework capturing the mutual dependence of electoral systems and party systems. The impact of passive influence is successfully tested on one out of two factors closely related to party systems: choice set size (i.e., number of options provided to voters) and degree of ideological polarization. The research utilizes established datasets (i.e., Constituency-Level Elections Archive, Party System Polarization Index, Chapel Hill Expert Survey, and Manifesto Project Database) and via regression analysis with clustered robust standard errors concludes that the choice set size constitutes an attribute with passive influence over electoral systems. Thus, it must be reflected when outcomes of electoral systems are estimated or compared across various contexts.


2021 ◽  
Author(s):  
Yuqi Wang ◽  
Tianyuan Liu ◽  
Di Zhang

Abstract The research on the supercritical carbon dioxide (S-CO2) Brayton cycle has gradually become a hot spot in recent years. The off-design performance of turbine is an important reference for analyzing the variable operating conditions of the cycle. With the development of deep learning technology, the research of surrogate models based on neural network has received extensive attention. In order to improve the inefficiency in traditional off-design analyses, this research establishes a data-driven deep learning off-design aerodynamic prediction model for a S-CO2 centrifugal turbine, which is based on a deep convolutional neural network. The network can rapidly and adaptively provide dynamic aerodynamic performance prediction results for varying blade profiles and operating conditions. Meanwhile, it can illustrate the mechanism based on the field reconstruction results for the generated aerodynamic performance. The training results show that the off-design aerodynamic prediction convolutional neural network (OAP-CNN) has reduced the mean and maximum error of efficiency prediction compared with the traditional Gaussian Process Regression (GPR) and Artificial Neural Network (ANN). Aiming at the off-design conditions, the pressure and temperature distributions with acceptable error can be obtained without a CFD calculation. Besides, the influence of off-design parameters on the efficiency and power can be conveniently acquired, thus providing the reference for an optimized operation strategy. Analyzing the sensitivity of AOP-CNN to training data set size, the prediction accuracy is acceptable when the percentage of training samples exceeds 50%. The minimum error appears when the training data set size is 0.8. The mean and maximum errors are respectively 1.46% and 6.42%. In summary, this research provides a precise and fast aerodynamic performance prediction model in the analyses of off-design conditions for S-CO2 turbomachinery and Brayton cycle.


Author(s):  
Marcel Bengs ◽  
Finn Behrendt ◽  
Julia Krüger ◽  
Roland Opfer ◽  
Alexander Schlaefer

Abstract Purpose Brain Magnetic Resonance Images (MRIs) are essential for the diagnosis of neurological diseases. Recently, deep learning methods for unsupervised anomaly detection (UAD) have been proposed for the analysis of brain MRI. These methods rely on healthy brain MRIs and eliminate the requirement of pixel-wise annotated data compared to supervised deep learning. While a wide range of methods for UAD have been proposed, these methods are mostly 2D and only learn from MRI slices, disregarding that brain lesions are inherently 3D and the spatial context of MRI volumes remains unexploited. Methods We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance compared to learning from slices. We evaluate and compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance. Results Using two publicly available segmentation data sets for evaluation, 3D VAEs outperform their 2D counterpart, highlighting the advantage of volumetric context. Also, our 3D erasing methods allow for further performance improvements. Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE. Conclusions We propose 3D deep learning methods for UAD in brain MRI combined with 3D erasing and demonstrate that 3D methods clearly outperform their 2D counterpart for anomaly segmentation. Also, our spatial erasing method allows for further performance improvements and reduces the requirement for large data sets.


2021 ◽  
Vol 13 (9) ◽  
pp. 1689
Author(s):  
Chuang Lin ◽  
Shanxin Guo ◽  
Jinsong Chen ◽  
Luyi Sun ◽  
Xiaorou Zheng ◽  
...  

The deep-learning-network performance depends on the accuracy of the training samples. The training samples are commonly labeled by human visual investigation or inherited from historical land-cover or land-use maps, which usually contain label noise, depending on subjective knowledge and the time of the historical map. Helping the network to distinguish noisy labels during the training process is a prerequisite for applying the model for training across time and locations. This study proposes an antinoise framework, the Weight Loss Network (WLN), to achieve this goal. The WLN contains three main parts: (1) the segmentation subnetwork, which any state-of-the-art segmentation network can replace; (2) the attention subnetwork (λ); and (3) the class-balance coefficient (α). Four types of label noise (an insufficient label, redundant label, missing label and incorrect label) were simulated by dilate and erode processing to test the network’s antinoise ability. The segmentation task was set to extract buildings from the Inria Aerial Image Labeling Dataset, which includes Austin, Chicago, Kitsap County, Western Tyrol and Vienna. The network’s performance was evaluated by comparing it with the original U-Net model by adding noisy training samples with different noise rates and noise levels. The result shows that the proposed antinoise framework (WLN) can maintain high accuracy, while the accuracy of the U-Net model dropped. Specifically, after adding 50% of dilated-label samples at noise level 3, the U-Net model’s accuracy dropped by 12.7% for OA, 20.7% for the Mean Intersection over Union (MIOU) and 13.8% for Kappa scores. By contrast, the accuracy of the WLN dropped by 0.2% for OA, 0.3% for the MIOU and 0.8% for Kappa scores. For eroded-label samples at the same level, the accuracy of the U-Net model dropped by 8.4% for OA, 24.2% for the MIOU and 43.3% for Kappa scores, while the accuracy of the WLN dropped by 4.5% for OA, 4.7% for the MIOU and 0.5% for Kappa scores. This result shows that the antinoise framework proposed in this paper can help current segmentation models to avoid the impact of noisy training labels and has the potential to be trained by a larger remote sensing image set regardless of the inner label error.


Author(s):  
Hongbin Xia ◽  
Yang Luo ◽  
Yuan Liu

AbstractThe collaborative filtering method is widely used in the traditional recommendation system. The collaborative filtering method based on matrix factorization treats the user’s preference for the item as a linear combination of the user and the item latent vectors, and cannot learn a deeper feature representation. In addition, the cold start and data sparsity remain major problems for collaborative filtering. To tackle these problems, some scholars have proposed to use deep neural network to extract text information, but did not consider the impact of long-distance dependent information and key information on their models. In this paper, we propose a neural collaborative filtering recommender method that integrates user and item auxiliary information. This method fully integrates user-item rating information, user assistance information and item text assistance information for feature extraction. First, Stacked Denoising Auto Encoder is used to extract user features, and Gated Recurrent Unit with auxiliary information is used to extract items’ latent vectors, respectively. The attention mechanism is used to learn key information when extracting text features. Second, the latent vectors learned by deep learning techniques are used in multi-layer nonlinear networks to learn more abstract and deeper feature representations to predict user preferences. According to the verification results on the MovieLens data set, the proposed model outperforms other traditional approaches and deep learning models making it state of the art.


2021 ◽  
Vol 42 (1) ◽  
pp. e90289
Author(s):  
Carlos Eduardo Belman López

Given that it is fundamental to detect positive COVID-19 cases and treat affected patients quickly to mitigate the impact of the virus, X-ray images have been subjected to research regarding COVID-19, together with deep learning models, eliminating disadvantages such as the scarcity of RT-PCR test kits, their elevated costs, and the long wait for results. The contribution of this paper is to present new models for detecting COVID-19 and other cases of pneumonia using chest X-ray images and convolutional neural networks, thus providing accurate diagnostics in binary and 4-classes classification scenarios. Classification accuracy was improved, and overfitting was prevented by following 2 actions: (1) increasing the data set size while the classification scenarios were balanced; and (2) adding regularization techniques and performing hyperparameter optimization. Additionally, the network capacity and size in the models were reduced as much as possible, making the final models a perfect option to be deployed locally on devices with limited capacities and without the need for Internet access. The impact of key hyperparameters was tested using modern deep learning packages. The final models obtained a classification accuracy of 99,17 and 94,03% for the binary and categorical scenarios, respectively, achieving superior performance compared to other studies in the literature, and requiring a significantly lower number of parameters. The models can also be placed on a digital platform to provide instantaneous diagnostics and surpass the shortage of experts and radiologists.


Sign in / Sign up

Export Citation Format

Share Document