scholarly journals The molecular evolution of Dabie bandavirus (Phenuiviridae: Bandavirus: Dabie bandavirus), the agent of severe fever with thrombocytopenia syndrome

2022 ◽  
Vol 66 (6) ◽  
pp. 409-416
Author(s):  
T. E. Sizikova ◽  
V. N. Lebedev ◽  
S. V. Borisevich

Since the Dabie bandavirus (DBV; former SFTS virus, SFTSV) was identified, the epidemics of severe fever with thrombocytopenic syndrome (SFTS) caused by this virus have occurred in several countries in East Asia. The rapid increase in incidence indicates that this infectious agent has a pandemic potential and poses an imminent global public health threat.The analysis of molecular evolution of SFTS agent that includes its variants isolated in China, Japan and South Korea was performed in this review. The evolution rate of DBV and the estimated dates of existence of the common ancestor were ascertained, and the possibility of reassortation was demonstrated.The evolutionary rates of DBV genome segments were estimated to be 2.28 × 10-4 nucleotides/site/year for S-segment, 2.42 × 10-4 for M-segment, and 1.19 × 10-4 for L-segment. The positions of positive selection were detected in the viral genome.Phylogenetic analyses showed that virus may be divided into two clades, containing six different genotypes. The structures of phylogenetic trees for S-, M- and L-segments showed that all genotypes originate from the common ancestor.Data of sequence analysis suggest that DBV use several mechanisms to maintain the high level of its genetic diversity. Understanding the phylogenetic factors that determine the virus transmission is important for assessing the epidemiological characteristics of the disease and predicting its possible outbreaks.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Eric J. Devor

Placental mammals (Placentalia) are a very successful group that, today, comprise 94% of all mammalian species. Recent phylogenetic analyses, coupled with new, quite complete fossils, suggest that the crown orders were all established rapidly from a common ancestor just after the Cretaceous/Tertiary (K/T) boundary 65 million years ago. Extensive molecular and morphologic evidence has led to a description of the common ancestor of all Placentalia in which a two-horned uterus and a hemochorial placenta are present. Thus, the process of placentation in which the placenta invades and anchors to the uterine epithelium was already established. One factor that has been suggested as a crucial component of this process is placenta-specific protein 1 (PLAC1). A phylogenetic analysis of the PLAC1 protein in 25 placental mammal species, representing nine of the sixteen crown orders of the Placentalia, suggests that this protein was present in the placental common ancestor in the form we see it today, that it evolved in the Placentalia and has been subject to the effects of purifying selection since its appearance.


2020 ◽  
Vol 37 (5) ◽  
pp. 1387-1393 ◽  
Author(s):  
Jie Yu ◽  
Yuyun Zhang ◽  
Wu Liu ◽  
Hua Wang ◽  
Shaoting Wen ◽  
...  

Abstract The root originated independently in euphyllophytes (ferns and seed plants) and lycophytes; however, the molecular evolutionary route of root initiation remains elusive. By analyses of the fern Ceratopteris richardii and seed plants, here we show that the molecular pathway involving auxin, intermediate-clade WUSCHEL-RELATED HOMEOBOX (IC-WOX) genes, and WUSCHEL-clade WOX (WC-WOX) genes could be conserved in root initiation. We propose that the “auxin>IC-WOX>WC-WOX” module in root initiation might have arisen in the common ancestor of euphyllophytes during the second origin of roots, and that this module has further developed during the evolution of different root types in ferns and seed plants.


Archaea ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Patrick Forterre

It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the “prokaryotic” phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other.


2018 ◽  
Vol 11 (1) ◽  
pp. 252-258 ◽  
Author(s):  
Yusuke Morita ◽  
Hiromi Nishida

Background:The genusDeinococcusconsists of species in rod-shape (Bacilli) and spherical shape (Cocci).Objective:In this study, we aimed to determine whether the common ancestor ofDeinococcusspecies was rod-shaped or spherical.Methods:We compared the homologs of the proteins related to the rod-shape in bacteria (MreB, MreC, MreD, MrdA, RodA, and RodZ) in variousDeinococcusspecies andThermus thermophilus.Results:The phylogenetic trees based on each protein and the homologs reflected the evolutionary relationships of the species, indicating that the Horizontal transfer of the genes did not occur during theDeinococcusevolution.Conclusion:The ancestor of the genusDeinococcuswas rod-shaped, and the spherical forms appeared when the rod-shaped formation system was lost during evolution and diversification within the genus.


2000 ◽  
Vol 15 (2) ◽  
pp. 276-278 ◽  
Author(s):  
Marco Salemi ◽  
Korbinian Strimmer ◽  
William W. Hall ◽  
Margaret Duffy ◽  
Eric Delaporte ◽  
...  

Endocrinology ◽  
2005 ◽  
Vol 146 (5) ◽  
pp. 2165-2170 ◽  
Author(s):  
Mark O. Huising ◽  
Gert Flik

Abstract CRH-binding protein (CRH-BP) is a key factor in the regulation of CRH signaling; it modulates the bioactivity and bioavailability of CRH and its related peptides. The conservation of CRH-BP throughout vertebrates was only recently demonstrated. Here we report the presence of CRH-BP in the honeybee (Apis mellifera) and other insects. Honeybee CRH-BP resembles previously characterized vertebrate CRH-BP sequences with respect to conserved cysteine residues, gene organization, and overall sequence identity. Phylogenetic analyses confirm the unambiguous orthology of insect and vertebrate CRH-BP sequences. Soon after their discovery, it was noted that insect diuretic hormone-I (DH-I) and its receptor share similarities with the vertebrate CRH family and their receptors. Despite these similarities, demonstration of common ancestry of DH-I and the vertebrate CRH family is still speculative: the mature neuropeptides are short, and their genes differ substantially with regard to the number of coding exons. Moreover, DH and CRH receptors belong to the much larger family of G protein-coupled receptors. In contrast, the unique and conspicuous features of CRH-BP greatly facilitate the establishment of orthology over much larger evolutionary distances. The identification of CRH-BP in insects clearly indicates that this gene predates vertebrates by at least several hundred million years. Moreover, our findings imply that a CRH system is shared by insects and vertebrates alike and, consequently, that it has been present at least since the common ancestor to both phylogenetic lines of proto- and deuterostomians.


2004 ◽  
Vol 85 (10) ◽  
pp. 2799-2807 ◽  
Author(s):  
Gábor M. Kovács ◽  
Andrew J. Davison ◽  
Alexender N. Zakhartchouk ◽  
Balázs Harrach

Simian adenovirus 3 (SAdV-3) is one of several adenoviruses that were isolated decades ago from Old World monkeys. Determination of the complete DNA sequence of SAdV-3 permitted the first full genomic comparison of a monkey adenovirus with adenoviruses of humans (HAdVs) and chimpanzees, which are recognized formally as constituting six of the species (HAdV-A to HAdV-F) within the genus Mastadenovirus. The SAdV-3 genome is 34 246 bp in size and has a G+C content of 55·3 mol%. It contains all the genes that are characteristic of the genus Mastadenovirus and has a single VA-RNA gene and six genes in each of the E3 and E4 regions. The genetic organization is the same as that of HAdV-12, a member of the HAdV-A species. Phylogenetic analyses showed that although SAdV-3 is related marginally more closely to HAdV-A and HAdV-F than to other species, it represents a unique lineage that branched at an early stage of primate adenovirus divergence. The results imply that the genetic layout in SAdV-3 and HAdV-12 may also have characterized the common ancestor of all sequenced primate adenoviruses.


2020 ◽  
Vol 7 (2) ◽  
pp. 191887 ◽  
Author(s):  
Hong Zou ◽  
Ivan Jakovlić ◽  
Dong Zhang ◽  
Cong-Jie Hua ◽  
Rong Chen ◽  
...  

The majority strand of mitochondrial genomes of crustaceans usually exhibits negative GC skews. Most isopods exhibit an inversed strand asymmetry, believed to be a consequence of an inversion of the replication origin (ROI). Recently, we proposed that an additional ROI event in the common ancestor of Cymothoidae and Corallanidae families resulted in a double-inverted skew (negative GC), and that taxa with homoplastic skews cluster together in phylogenetic analyses (long-branch attraction, LBA). Herein, we further explore these hypotheses, for which we sequenced the mitogenome of Asotana magnifica (Cymothoidae), and tested whether our conclusions were biased by poor taxon sampling and inclusion of outgroups. (1) The new mitogenome also exhibits a double-inverted skew, which supports the hypothesis of an additional ROI event in the common ancestor of Cymothoidae and Corallanidae families. (2) It exhibits a unique gene order, which corroborates that isopods possess exceptionally destabilized mitogenomic architecture. (3) Improved taxonomic sampling failed to resolve skew-driven phylogenetic artefacts. (4) The use of a single outgroup exacerbated the LBA, whereas both the use of a large number of outgroups and complete exclusion of outgroups ameliorated it.


2019 ◽  
Vol 6 (7) ◽  
pp. 190387 ◽  
Author(s):  
Robert J. Asher ◽  
Martin R. Smith ◽  
Aime Rankin ◽  
Robert J. Emry

Given an evolutionary process, we expect distinct categories of heritable data, sampled in ever larger amounts, to converge on a single tree of historical relationships. We tested this assertion by undertaking phylogenetic analyses of a new morphology-DNA dataset for mammals, focusing on Glires and including the oldest known skeletons of geomyoid and Ischyromys rodents. Our results support geomyoids in the mouse-related clade (Myomorpha) and a ricochetal locomotor pattern for the common ancestor of geomyoid rodents. They also support Ischyromys in the squirrel-related clade (Sciuromorpha) and the evolution of sciurids and Aplodontia from extinct, ‘protrogomorph’-grade rodents. Moreover, ever larger samples of characters from our dataset increased congruence with an independent, well-corroborated tree. Addition of morphology from fossils increased congruence to a greater extent than addition of morphology from extant taxa, consistent with fossils' temporal proximity to the common ancestors of living species, reflecting the historical, phylogenetic signal present in our data, particularly in morphological characters from fossils. Our results support the widely held but poorly tested intuition that fossils resemble the common ancestors shared by living species, and that fossilizable hard tissues (i.e. bones and teeth) help to reconstruct the evolutionary tree of life.


Archaea ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Shin-ichi Yokobori ◽  
Yoshiki Nakajima ◽  
Satoshi Akanuma ◽  
Akihiko Yamagishi

Bacteria and Eukarya have cell membranes withsn-glycerol-3-phosphate (G3P), whereas archaeal membranes containsn-glycerol-1-phosphate (G1P). Determining the time at which cells with either G3P-lipid membranes or G1P-lipid membranes appeared is important for understanding the early evolution of terrestrial life. To clarify this issue, we reconstructed molecular phylogenetic trees of G1PDH (G1P dehydrogenase; EgsA/AraM) which is responsible for G1P synthesis and G3PDHs (G3P dehydrogenase; GpsA and GlpA/GlpD) and glycerol kinase (GlpK) which is responsible for G3P synthesis. Together with the distribution of these protein-encoding genes among archaeal and bacterial groups, our phylogenetic analyses suggested that GlpA/GlpD in the Commonote (the last universal common ancestor of all extant life with a cellular form,Commonote commonote) acquired EgsA (G1PDH) from the archaeal common ancestor (Commonote archaea) and acquired GpsA and GlpK from a bacterial common ancestor (Commonote bacteria). In our scenario based on this study, the Commonote probably possessed a G3P-lipid membrane synthesized enzymatically, after which the archaeal lineage acquired G1PDH followed by the replacement of a G3P-lipid membrane with a G1P-lipid membrane.


Sign in / Sign up

Export Citation Format

Share Document