scholarly journals Technical and Financial Feasibility Study for Installation of Solar Panels at IDOT-owned Facilities

2021 ◽  
Author(s):  
Todd Rusk ◽  
◽  
Ryan Siegel ◽  
Linda Larsen ◽  
Tim Lindsey ◽  
...  

The Smart Energy Design Assistance Center assessed the administrative, technical, and economic aspects of feasibility related to the procurement and installation of photovoltaic solar systems on IDOT-owned buildings and lands. To address administrative feasibility, we explored three main ways in which IDOT could procure solar projects: power purchase agreement (PPA), direct purchase, and land lease development. Of the three methods, PPA and direct purchase are most applicable for IDOT. While solar development is not free of obstacles for IDOT, it is administratively feasible, and regulatory hurdles can be adequately met given suitable planning and implementation. To evaluate IDOT assets for solar feasibility, more than 1,000 IDOT sites were screened and narrowed using spatial analytic tools. A stakeholder feedback process was used to select five case study sites that allowed for a range of solar development types, from large utility-scale projects to small rooftop systems. To evaluate financial feasibility, discussions with developers and datapoints from the literature were used to create financial models. A large solar project request by IDOT can be expected to generate considerable attention from developers and potentially attractive PPA pricing that would generate immediate cash flow savings for IDOT. Procurement partnerships with other state agencies will create opportunities for even larger projects with better pricing. However, in the near term, it may be difficult for IDOT to identify small rooftop or other small on-site solar projects that are financially feasible. This project identified two especially promising solar sites so that IDOT can evaluate other solar site development opportunities in the future. This project also developed a web-based decision-support tool so IDOT can identify potential sites and develop preliminary indications of feasibility. We recommend that IDOT begin the process of developing at least one of their large sites to support solar electric power generation.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2446 ◽  
Author(s):  
Vu Hau ◽  
Munir Husein ◽  
Il-Yop Chung ◽  
Dong-Jun Won ◽  
William Torre ◽  
...  

The popularity of microgrids is increasing considerably because of their environmental and technical advantages. However, the major challenge in microgrid integration is its financial feasibility due to high capital costs. To address this obstacle, renewable energy incentive programs, which are the motivation of this study, have been proposed in many countries. This paper provides a comprehensive evaluation of the technical and financial feasibility of a campus microgrid based on a techno-economic analysis using the Microgrid Decision Support Tool, which was implemented to support decision-making in the context of microgrid project investment. A method for microgrid design aiming to maximize system profitability is presented. The optimal microgrid configuration is selected depending on financial indices of the project, which directly address the returns on an investment. Most importantly, this analysis captures all the benefits of financial incentives for microgrid projects in California, U.S., which presents a key difference between the California market and other markets. The impact of incentives and uncertain financial parameters on the project investment is verified by sensitivity analysis. The outcomes show that the optimal configuration generates significant electricity savings, and the incentives strongly determine the financial feasibility and the optimal design of a microgrid.


Author(s):  
Arkasama Bandyopadhyay ◽  
Julia P. Conger ◽  
Michael E. Webber ◽  
Benjamin D. Leibowicz

Abstract This study builds a decision support tool to evaluate when it is a good economic decision (least cost with minimum discomfort) for the residential customer to invest in distributed energy resources (DERs) based on different electricity rate structures, DER ownership frameworks, and DER rebates offered by electric utilities. The tool is demonstrated using empirical electricity consumption data from Pecan Street Inc. (a non-profit entity based on Austin, Texas), residential rates from Austin Energy (the municipal electric utility in Austin, Texas), DER ownership costs from various nationwide pilot programs, and incentives offered by electric utilities in the United States. Results show that for constant electricity rates, the overall expenditure is least when the customer owns solar panels without storage, while for time-varying pricing structures, the least expensive scenario is one where the customer does not own any DERs. As the capital costs for DERs decline, utilities incentivize customer ownership of DERs, and more residential customers face the decision of whether to invest in DERs, this study aims to be a key tool in aiding that decision-making process.


2016 ◽  
Vol 78 ◽  
pp. 203-209 ◽  
Author(s):  
K.J. Hutchinson ◽  
D.R. Scobie ◽  
J. Beautrais ◽  
A.D. Mackay ◽  
G.M. Rennie ◽  
...  

To develop a protocol to guide pasture sampling for estimation of paddock pasture mass in hill country, a range of pasture sampling strategies, including random sampling, transects and stratification based on slope and aspect, were evaluated using simulations in a Geographical Information Systems computer environment. The accuracy and efficiency of each strategy was tested by sampling data obtained from intensive field measurements across several farms, regions and seasons. The number of measurements required to obtain an accurate estimate was related to the overall pasture mass and the topographic complexity of a paddock, with more variable paddocks requiring more samples. Random sampling from average slopes provided the best balance between simplicity and reliability. A draft protocol was developed from the simulations, in the form of a decision support tool, where visual determination of the topographic complexity of the paddock, along with the required accuracy, were used to guide the number of measurements recommended. The protocol was field tested and evaluated by groups of users for efficacy and ease of use. This sampling protocol will offer farmers, consultants and researchers an efficient, reliable and simple way to determine pasture mass in New Zealand hill country settings. Keywords: hill country, feed budgeting, protocol pasture mass, slope


2020 ◽  
Vol 27 (1) ◽  
pp. 70-82 ◽  
Author(s):  
Aleksandar Radonjić ◽  
Danijela Pjevčević ◽  
Vladislav Maraš

AbstractThis paper investigates the use of neural networks (NNs) for the problem of assigning push boats to barge convoys in inland waterway transportation (IWT). Push boat–barge convoy assignmentsare part of the daily decision-making process done by dispatchers in IWT companiesforwhich a decision support tool does not exist. The aim of this paper is to develop a Neural Network Ensemble (NNE) model that will be able to assist in push boat–barge convoy assignments based on the push boat power.The primary objective of this paper is to derive an NNE model for calculation of push boat Shaft Powers (SHPs) by using less than 100% of the experimental data available. The NNE model is applied to a real-world case of more than one shipping company from the Republic of Serbia, which is encountered on the Danube River. The solution obtained from the NNE model is compared toreal-world full-scale speed/power measurements carried out on Serbian push boats, as well as with the results obtained from the previous NNE model. It is found that the model is highly accurate, with scope for further improvements.


Author(s):  
Christos Katrakazas ◽  
Natalia Sobrino ◽  
Ilias Trochidis ◽  
Jose Manuel Vassallo ◽  
Stratos Arampatzis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document