scholarly journals Integrated Renewable Energy System for Stand-Alone Operations with Optimal Load Dispatch Strategy

2021 ◽  
Vol 3 (2) ◽  
pp. 89-98
Author(s):  
Abul Bashar ◽  
Smys S

The hybrid system configuration is used for meeting the thermal and electrical load demands of an off-grid network simultaneously with the model proposed in this paper. Li-ion battery, Micro Gas Turbine (MGT), wind turbine and solar photovoltaic configurations are analyzed. Hybrid Optimization of Multiple Electric Renewables (HOMER) software is used for estimating utilization of various strategies for power management, recovered waste heat and excess energy in the model. The heating demand is met and examined by the thermal load controller with and without the options of waste heat recovery. The hybrid system hardware components are sized, compared and analyzed based on cyclic charging (CC) and load following (LF) dispatch strategies. Various electrical to thermal load ratio are considered for examining the system performance. Various uncertainties and their effects are reported on comparison of grid-connected and stand-alone options. The hardware components are reduced in size thereby appreciable cost benefits are observed in the results. In the optimized hybrid system, the renewable energy fraction is increased causing high renewable penetrations and the CO2 emission is reduced by a large value. For all the configurations analyzed, several environmental and cost benefits are offered by the CC strategy.

Author(s):  
Yilser Devrim ◽  
Serkan Eryilmaz

In this article, a hybrid system that consists of a specified number of wind turbines and solar modules is considered. In particular, the system is modeled using weighted k-out-of- n system which is also known as a threshold system in reliability literature. The system under concern consists of [Formula: see text] identical wind turbines and [Formula: see text] identical solar modules, and each turbine and module can be in one of two states as working or failed. The probability that the entire hybrid system with [Formula: see text] components produces power at minimum level k is computed and evaluated. The importance of single-wind turbine and solar module is also calculated to measure which renewable energy component is more critical and important. Extensive numerical results that are based on real data set are presented to illustrate the model.


2016 ◽  
Vol 839 ◽  
pp. 130-135
Author(s):  
Ivan Tendo ◽  
Chatchai Sirisamphanwong

In this research paper, an illustration for system size optimization for a stand-alone PV – diesel hybrid system is obtained. The requirement is to obtain an optimal size that can meet energy demand at an optimized cost for a given lifetime period of the project, this will be achieved using HOMER software to further improve the system parameters like performance ratio, renewable energy fraction, MATLAB will be used. This research study will be done basing on a system currently installed at the School of Renewable Energy, Naresuan University (SERT), this system has a capacity of 120 kW, and it is a hybrid system with PV array, Diesel generator and battery storage system. The cost parameters that will be addressed are; - Net present cost (NPC), Cost of Energy (COE), Capital cost (CC). The initial size of the hybrid system is PV-120kW, Diesel generator -100kW and battery storage of 200kWh after modelling and simulation with HOMER software using special models to show the predicted performance of the final outcome, the optimal size created has a PV size of 100kW, diesel generator with a size of 100kW and battery storage of 100kWh and compared to the initial system COE od 1.01$/kWh, the optimal size has a COE of 0.934$/kWh.


2020 ◽  
Vol 170 ◽  
pp. 01015
Author(s):  
Avinash Kaldate ◽  
Amarsingh Kanase-Patil ◽  
Shashikant Lokhande

One downside to Green Energy is that it cannot be estimated. Therefore, determining the optimum planning and perfect working strategies for the resources to be included in the hybrid system is very important. HOMER software has been used in this research paper to solve the case study of the hybrid renewable energy system. Due to its extensive analytical capabilities and advanced prediction capabilities based on the sensitivity of variables, HOMER is one of the most used software for optimal planning purposes. A case study for the sizing of a renewable energy-based hybrid system is solved in this article, using the Hybrid Optimization of Multiple Energy Resources (HOMER) software. Photovoltaic panels (PV panels), wind turbines (WT), batteries, converters, electric charge and grid are used in case study. The results of the simulation are presented in graphical form and tabulated for better system visualization. The design of a system to supply 6.8 KWh/d whereas the peak is 1.04 KW electric loads has been performed using HOMER software. In order to allow the user to choose the most suitable option, a comparative analysis has made, showing the pros and cons of cases. Optimum construction conditions help to lower operating costs.


2015 ◽  
Vol 4 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Qais H. Alsafasfeh

Most recent research on renewable energy resources main one goal to make Jordan less dependent on imported energy with locally developed and produced solar power, this paper discussed the efficient system of Wind/ PV Hybrid System to be than main power sources for south part of Jordan, the proposed hybrid system design based on Smart Grid Methodology,  the solar energy will be installed on top roof of  electricity subscribers across the Governorate of Maan, Tafila, Karak and Aqaba and the wind energy will set in one site by this way the capital cost for project will be reduced also the  simulation result show   the feasibility  is a very competitive and feasible cost . Economics analysis of a proposed renewable energy system was made using HOMER simulation and evaluation was completed with the cost per kilowatt of EDCO company, the net present cost is $2,551,676,416, the cost of energy is 0.07kWhr with a renewable fraction of 86.6 %.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1180 ◽  
Author(s):  
Chen Chen ◽  
Jiangfan Lin ◽  
Lei Pan ◽  
Kwang Lee ◽  
Li Sun

The distributed energy system is an energy supply method built around the end users, which can achieve energy sustainability and reduce emissions compared to traditional centralized energy systems. The micro gas turbine (MGT)-based combined cooling and power (CCP) system has received renewed attention as an important distributed energy system technology due to its substantial energy savings and reduced emission levels. The task of the MGT-CCP system is to quickly adapt to changes in various renewable energy sources to maintain the balance in energy supply and demand in a distributed energy system. Therefore, it is imperative to improve the load tracking capability of the MGT-CCP system with advanced control technologies toward achieving this goal. However, the difficulty of controlling the MGT-CCP system is that the MGT responds very fast while CCP responds very slowly. To this end, the dynamic characteristics and nonlinear distribution of the MGT and CCP processes are analyzed, and a coordinated predictive control strategy is proposed by utilizing the generalized predictive control for the MGT system and the Hammerstein generalized predictive control for the CCP system. The coordinated predictive control of generalized predictive control and Hammerstein generalized predictive control was implemented in an 80 kW MGT-CCP simulator to verify the effectiveness of the proposed method. The simulation results show that compared with PID and MPC, the proposed control method not only can greatly improve simultaneous cooling and power load-following capability, but also has the best control effect when accessing with renewable energy.


As hydropower is one of the commonly available renewable energy sources, so it is experiencing a development in the large part of the world. Pico hydropower is used as a distributed system based renewable energy system meant for rural or remote area load . It is, hence, of most significant to propose an effective methodology to assure the better making reimbursement of a combined Pico hydro system with solar pv system. The proposed method mainly estimates the feasible of installing Pico hydropower in a run-of river. The Methodologies to assess the feasibility and sustainability of such mechanism were depicted. The orderly designing of plant is defined by considering some optimal technological method that considers the dimension of components plus the estimation of the gross energy generation. Economical plus Technical data studies performed to examine the profitability and practicability of the system. This planned method can be examined as a study and the feasibility of developing a PHP in a run of river system is possible. The environmental impact on fixing this plant measured and possibly reduced. This results obtained are demonstrated for already existing infrastructure and analyzed that the cost can be reduced by using an optimized model. A simulation result has obtained the financial expand is more by the technique used for the combine hydro-PV hybrid system. In Addition to the environmental impact and effect an analysis has exposed that yearly more than 200 tons of carbon emission is reduced by producing clean and green liveliness by means of the environmental and ecological solution.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2133-2135

The renewable energy is the future of human race without optimally harnessing renewable energy human race will not move forward. As the non-renewable source of energy are moving towards depletion each day, the technological advancement toward renewable energy is moving with a fast pace. Each day we heard about a new technology, in this paper a hybrid system energy system is discussed. The hybrid system is achieved by utilizing solar energy and biomass energy. The system using a set of solar panel, biomass gasifier, boiler, steam turbine, generator, inverter and battery.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4945
Author(s):  
Wei Li ◽  
Jikang Li ◽  
Zhenzhong Hu ◽  
Sunwei Li ◽  
P. W. Chan

In the present study, a novel probabilistic approach is proposed to optimize a stand-alone hybrid wind-photovoltaic renewable energy system installed in the South China Sea. In detail, the probability distribution of power generated from a hybrid wind-photovoltaic system is estimated based on the probabilistic descriptions of wind and solar energy resources in the South China Sea. In addition, the present study proposed a battery level coefficient model to calculate the battery capacity of the hybrid system. As the battery level coefficient implies the expected power deficit in a specific continuous duration, it reflects the reliability of the battery system and, hence, the performance of the system under the power deficit condition. Given the probabilistic models estimated the stability of power generations, a genetic algorithm is applied to optimize the sizes of the system components (the installed capacities of wind turbines and photovoltaic modules and the load) when the levelized cost of energy (LCOE) is used as the indicator. The optimization verifies that the proposed probabilistic approach provides reasonable estimates of the power generation of a hybrid system in an optimization process. In addition, the comparisons with the conventional deterministic approach implies that the widely used loss of power supply probability (LPSP) could be interpreted, in a statistical sense, as the expected duration of power deficit. More importantly, the LPSP is connected to the localized sea condition, and therefore, this stability assessment criterion should be specified according to the location where the system is installed.


2015 ◽  
Vol 12 (3) ◽  
Author(s):  
Zheng Dang ◽  
Hua Zhao ◽  
Guang Xi

A numerical model has been developed for the performance analysis of solid oxide fuel cell (SOFC)/micro gas turbine (MGT) hybrid systems with prereforming of natural gas, in which a quasi two-dimensional model has been built up to simulate the cell electrochemical reaction, heat and mass transfer within tubular SOFC. The developed model can be used not only to predict the overall performance of the SOFC/MGT hybrid system but also to reveal the nonuniform temperature distribution within SOFC unit. The effects of turbine inlet temperature (TIT) and pressure ratio (PR) on the performance of the hybrid system have been investigated. The results show that selecting smaller TIT or PR value will lead to relative higher system efficiency and lower CO2 emission ratio; however, this will raise the risk to destroy SOFC beyond the limitation temperature of electrolyte.


Sign in / Sign up

Export Citation Format

Share Document