scholarly journals Design of Vibration Frequency Method with Fine-Tuned Factor for Fault Detection of Three Phase Induction Motor

2021 ◽  
Vol 3 (1) ◽  
pp. 52-65
Author(s):  
Thomas Amanuel ◽  
Amanuel Ghirmay ◽  
Huruy Ghebremeskel ◽  
Robel Ghebrehiwet ◽  
Weldekidan Bahlibi

This research article focuses on industrial applications to demonstrate the characterization of current and vibration analysis to diagnose the induction motor drive problems. Generally, the induction motor faults are detected by monitoring the current and proposed fine-tuned vibration frequency method. The stator short circuit fault, broken rotor bar fault, air gap eccentricity, and bearing fault are the common faults that occur in an induction motor. The detection process of the proposed method is based on sidebands around the supply frequency in the stator current signal and vibration. Moreover, it is very challenging to diagnose the problem that occur due to the complex electromagnetic and mechanical characteristics of an induction motor with vibration measures. The design of an accurate model to measure vibration and stator current is analyzed in this research article. The proposed method is showing how efficiently the root cause of the problem can be diagnosed by using the combination of current and vibration monitoring method. The proposed model is developed for induction motor and its circuit environment in MATLAB is verified to perform an accurate detection and diagnosis of motor fault parameters. All stator faults are turned to turn fault; further, the rotor-broken bar and eccentricity are structured in each test. The output response (torque and stator current) is simulated by using a modified winding procedure (MWP) approach by tuning the winding geometrical parameter. The proposed model in MATLAB Simulink environment is highly symmetrical, which can easily detect the signal component in fault frequencies that occur due to a slight variation and improper motor installation. Finally, this research article compares the other existing methods with proposed method.

2016 ◽  
Vol 4 (4) ◽  
pp. 1
Author(s):  
SAHNI JAYANTA KUMAR ◽  
SAHAY KULDEEP ◽  
SINGH SATYENDRA ◽  
◽  
◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 54173-54183
Author(s):  
Arash Fereidooni ◽  
S. Alireza Davari ◽  
Cristian Garcia ◽  
Jose Rodriguez

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1307
Author(s):  
Haoriqin Wang ◽  
Huaji Zhu ◽  
Huarui Wu ◽  
Xiaomin Wang ◽  
Xiao Han ◽  
...  

In the question-and-answer (Q&A) communities of the “China Agricultural Technology Extension Information Platform”, thousands of rice-related Chinese questions are newly added every day. The rapid detection of the same semantic question is the key to the success of a rice-related intelligent Q&A system. To allow the fast and automatic detection of the same semantic rice-related questions, we propose a new method based on the Coattention-DenseGRU (Gated Recurrent Unit). According to the rice-related question characteristics, we applied word2vec with the TF-IDF (Term Frequency–Inverse Document Frequency) method to process and analyze the text data and compare it with the Word2vec, GloVe, and TF-IDF methods. Combined with the agricultural word segmentation dictionary, we applied Word2vec with the TF-IDF method, effectively solving the problem of high dimension and sparse data in the rice-related text. Each network layer employed the connection information of features and all previous recursive layers’ hidden features. To alleviate the problem of feature vector size increasing due to dense splicing, an autoencoder was used after dense concatenation. The experimental results show that rice-related question similarity matching based on Coattention-DenseGRU can improve the utilization of text features, reduce the loss of features, and achieve fast and accurate similarity matching of the rice-related question dataset. The precision and F1 values of the proposed model were 96.3% and 96.9%, respectively. Compared with seven other kinds of question similarity matching models, we present a new state-of-the-art method with our rice-related question dataset.


2010 ◽  
Vol 163-167 ◽  
pp. 2613-2617
Author(s):  
Hai Liang Wang ◽  
Tong Wei Gao

According to the 33 floors high building, blasting vibration monitoring had been carried on. The building, along Yunnan road tunnel of Qingdao Cross-harbor Tunnel Guide Line Project, has concrete frame structure. Monitoring data had been analyzed. Results showed that rules of vertical vibration velocity and main vibration frequency have similar relevance. Amplification effect of them was existed on the middle and top of the building. From the 2nd floor of downward ground to ground, the value of them suddenly decreased. Main vibration frequency is in the range of 101~102 order of magnitude.


2018 ◽  
Vol 27 (4) ◽  
pp. 1166-1173 ◽  
Author(s):  
I. Andrijauskas ◽  
M. Vaitkunas ◽  
R. Adaskevicius

The paper depicts about the photovoltaic actuated induction motor for driving electric vehicle, helps in improving the efficiency of electric vehicles, the advance “power electronic interface” is used. System efficiency and reliability are improved by this proposed idea, and current or voltage ripple can be effectively reduced. Using this proposed model reduces the component’s dimensions (active and passive), thus reducing costs and this technology reducing stress on switching devices. The designing and analysis of proposed model is done by using MATLAB / Simulink.


2017 ◽  
Vol 2 (2) ◽  
pp. 110-129
Author(s):  
Fatma Zohra DEKHANDJI ◽  
Mohamed DOUCHE ◽  
Nacer ZEBIDI

Power quality disturbances have always been a major concern among engineers. Any slight variation in voltage amplitude or frequency can cause customer equipment to fail, at a substantial cost in time and money.In this project we will use some mitigation techniques to protect the induction motor from excessive temperature (additional losses and high currents) and the rotor vibration torque pulsation caused by power quality disturbances.These mitigation techniques reduce the effects of the power quality disturbances on the induction motor, where the simulations done using MATLAB/SIMULINK.


Sign in / Sign up

Export Citation Format

Share Document