scholarly journals MODERN ELECTROCHEMICAL STORAGE POWER PLANTS AND THE PROBLEMS OF THEIR IMPLEMENTATION IN RUSSIA

2022 ◽  
Vol 1 (15) ◽  
pp. 56-59
Author(s):  
Yuriy Konovalov ◽  
Maksim Velichko ◽  
Fedor Voskoboynikov ◽  
Roman Istratov

The problems of developing new storage devices at all stages of development are considered. The advantages and disadvantages of modern lithium-ion storage devices are presented. The main problems of the accumulation industry development in Russia and the directions of their solution are shown.

2021 ◽  
Vol 1 (3) ◽  
pp. 49-56
Author(s):  
S.M. Zuyev ◽  
◽  
R.A. Maleyev ◽  
YU.M. Shmatkov ◽  
M.YU. Khandzhalov ◽  
...  

This article provides a comparative analysis of various energy storage devices. A detailed review and analysis of molecular energy storage units is carried out, their main characteristics and parame-ters, as well as their application areas, are determined. The main types of molecular energy storage are determined: electric double layer capacitors, pseudo capacitors, hybrid capacitors. Comparison of the characteristics of various batteries is given. The parameters of various energy storage devices are presented. The analysis of molecular energy storage devices and accumulators is carried out. Ttheir advantages and disadvantages are revealed. It has been shown that molecular energy storage or double layer electrochemical capacitors are ideal energy storage systems due to their high specific energy, fast charging and long life compared to conventional capacitors. The article presents oscillograms of a lithium-ion battery with a voltage of 10.8 V at a pulsed load current of 2A of a laptop with and without a molecular energy storage device, as well as oscil-lograms of a laptop with DVD lithium-ion battery with a voltage of 10.8 V with a parallel shutdown of a molecular energy storage device with a capacity of 7 F and without it. The comparative analysis shows that when the molecular energy storage unit with a 7 F capacity is switched on and off, transient processes are significantly improved and there are no supply voltage dips. The dependenc-es of the operating time of a 3.6 V 600 mAh lithium-ion battery at a load of 2 A for powering mo-bile cellular devices with and without a molecular energy storage are given. It is shown that when the molecular energy storage device is switched on, the battery operation time increases by almost 20%.


Batteries ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 35 ◽  
Author(s):  
Peter Kurzweil ◽  
Mikhail Shamonin

Frequency-dependent capacitance C(ω) is a rapid and reliable method for the determination of the state-of-charge (SoC) of electrochemical storage devices. The state-of-the-art of SoC monitoring using impedance spectroscopy is reviewed, and complemented by original 1.5-year long-term electrical impedance measurements of several commercially available supercapacitors. It is found that the kinetics of the self-discharge of supercapacitors comprises at least two characteristic time constants in the range of days and months. The curvature of the Nyquist curve at frequencies above 10 Hz (charge transfer resistance) depends on the available electric charge as well, but it is of little use for applications. Lithium-ion batteries demonstrate a linear correlation between voltage and capacitance as long as overcharge and deep discharge are avoided.


Nanoscale ◽  
2021 ◽  
Author(s):  
Haijiang Wu ◽  
Jiale Zhu ◽  
Liang Liu ◽  
Kequan Cao ◽  
Dan Yang ◽  
...  

Li-ion battery attracts great attentions due to the rapid increasing and urgent demand for high energy storage devices. MAX phase compounds, layered ternary transition metal carbides and/or nitrides, show promise...


Author(s):  
V.Ya. Braverman ◽  
B.K. Ilienko

Possibilities and prospects of accumulation of the electric power generated on objects of renewable energy sources - solar and wind power plants, with use of cryogenic liquids are considered. A comparison of the three most common ways of accumulating electricity: using lithium-ion batteries, hydrogen, liquid air. According to the proposed technology, the efficiency of recovery of electricity from liquid air is from 54 to 70%. The developed technology is based on cryogenic and thermal accumulation and has a high accumulation coefficient. It is shown that energy storage in cryogenic storage devices is the cheapest today. The proposed technology can also be used to generate electricity from liquefied natural gas using standard equipment developed by industry. The technological scheme of the cryoaccumulating station is offered. Bibl. 10, Fig. 1, Table 1.


2019 ◽  
Vol 55 (47) ◽  
pp. 6739-6742 ◽  
Author(s):  
Wei Shi ◽  
Rui Ding ◽  
Qilei Xu ◽  
Tong Yan ◽  
Yuxi Huang ◽  
...  

A vacancy defective perovskite Na0.85Ni0.45Co0.55F3.56 nanocrystal anode material constructs advanced lithium-ion storage devices with surface conversion and insertion hybrid mechanisms.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20893-20902 ◽  
Author(s):  
Yuan Zhang ◽  
Mutian Zhang ◽  
Wei Liu ◽  
Yongpeng Cui ◽  
Tianqi Wang ◽  
...  

Novel Si-doping porous fibers prepared by combining natural structures and artificial technology exhibit a superior high-rate capability.


2016 ◽  
Vol 4 (4) ◽  
pp. 1440-1445 ◽  
Author(s):  
Si Qin ◽  
Weiwei Lei ◽  
Dan Liu ◽  
Ying Chen

With the increasing interest in two-dimensional van der Waals materials, molybdenum disulfide (MoS2) has emerged as a promising material for electronic and energy storage devices.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042082
Author(s):  
O A Stepanskaya ◽  
N D D’yachkova ◽  
A B Batrashov

Abstract The aim of the study is to review the sources covering the problems of accumulating electricity on the railways and to find new solutions to reduce the use of electricity in traction power supply system. The article analyses some existing types of electric energy storage devices (capacitive, inertial, superconducting inductive, electrochemical, fuel cells and pumped storage power plants), their common installation locations, advantages, and disadvantages. The possibility of using them in railway traction power supply systems, in particular in mobile traction substations, is also assessed. In addition, the article lists the parameters on the basis of which the optimum type of storage device can be selected for the given conditions. The study concludes that the use of some types of energy storage devices in mobile traction substations is acceptable when regenerative braking can be used at the site, and this method of energy saving can be recommended in the engineering of new or reconstruction of existing traction substations. It has been found that capacitive and inertial (flywheel) electrical energy storage units are the most suitable in terms of parameters for installation of traction power supply systems.


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Sign in / Sign up

Export Citation Format

Share Document