scholarly journals Experimental and numerical evaluation on performance of potable water productivity with rectangular fins basin triangular solar still

Author(s):  
Subramaniyan C ◽  
◽  
Prakash K B ◽  
Amarkarthik A ◽  
Kalidasan B ◽  
...  

Demand and conservation for potable water has become a foremost concern world-wide. Many technologies were adapted for converting the saline water to potable water to meet the required demand on water conservation. In the current research work triangular solar still with rectangular-fins attached to the basin is proposed to enhance the output of potable water from the solar still setup. Solar still with and without rectangular-fins on the basin are fabricated for experimental comparison and evaluation in addition to numerical investigations. Thermal Performance, instantaneous efficiency and potable water output of the proposed solar still & base solar still are investigated during March month for the location of Sathyamangalam. Investigation shows enhancement of water production in the proposed solar still by 41% higher compared to the base still. The maximum distillate output from modified still and base still for a typical day is 3.1 liter and 2.2 liter respectively.

Author(s):  
Md. Raquibul Hasan

The availability of drinking water is reducing day by day, whereas the freshwater necessity is tremendously increasing. There is a need for some sustainable water distillation (purification) to overcome this problem. Solar desalination is a technique used to convert brackish or saline water into potable water, and solar still is a useful device to distil brackish water for drinking purposes. Numerous designs of the solar still system have been developed worldwide. Many researchers outlined mathematical terms, performed experiments and validated the outcome from the various types of solar stills by varying the design and operating parameters. In this article, a review of the active and passive solar stills' performance has been carried out.


2020 ◽  
pp. 221-231
Author(s):  
Anil Kumar ◽  
Rohit Kumar

Water and the use of conventional energy sources are two significant problems of the world. Water is essential for sustenance. Human beings need of potable water at less consumption of non- renewable energy resources. There are many techniques to convert saline water into potable water. In this paper, three-phase, three dimensional a single slope and double slope single basin still both were prepared and simulated by using ANSYS FLUENT v19.2. Simulation results of solar stills were made by using evaporation as well as condensation process at the climate conditions of Delhi (27.0238° N, 74.2179° E). Within the scope of this study, simulation results of both systems were calculated and compared with each other. It is examined that temperature inside the single slope solar still is maximum from 13:00 to 14:00 hrs while double slope still has low temperature compared to single still. The maximum and minimum temperature of water-vapor mixture inside the single slope still were calculated 435.39K and 22.283K and maximum and minimum temperature on glass were 379 K and 16.22 K whereas in double slope, maximum and minimum temperature of water-vapor mixture inside the still were 92.12K and 25.60K and glass temperature were 76.154K and 19.22K Hence, due to temperature difference between glass surface and outer environment, more condensation will be in single slope. Inner water temperature is responsible for more evaporation and higher temperature more than 50? can be found in single slope still as compared to double slope. Hence, single slope still could be better there.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Ahmadreza Ayoobi ◽  
Mahdi Ramezanizadeh

In recent years, producing energy and potable water has become a contemporaneous issue in all areas, especially in rural and remote areas. It is due to the limitation of fossil fuels in generating energy and the daily increase of potable water topic pollution due to various development activities in the industries. Gradually, the use of renewable energies has been suggested as far as humans focus on using these energies in various activities, which is gratis and accessible in more areas without having negative anthropogenic hazards. Solar radiation has an important position in renewable energies and has played a significant role in the desalination process due to the convenience in applying and abundance in the areas with potable water shortages. However, one of the active solar stills is the coupling of conventional solar still with a flat plate collector. In this type, a flat plate collector is used to raise the temperature of saline water which increases the productivity. In this research, the solar still coupled with a flat plate collector is reviewed as the active solar still and the affecting parameters on its performance and efficiency are discussed. First, a summary of working research and their research of flat plate collectors is reviewed to be more familiar with flat plate collectors, their details, and technology. Then, solar still coupled with a flat plate collector is extensively reviewed and discussed in detail. Four types of studies on solar still coupled with a flat plate collector were done, including energy analysis, exergy analysis, economic analysis, and productivity evaluation.


Author(s):  
Harender Sinhmar ◽  
Jitendra Bhati ◽  
Ritanshu Bhati

Abstract The shortage for the pure water exists in many developing countries like India even though three fourth of the earth is sheltered by water. The main reason behind this is the unplanned growth of industry and uncontrolled growth of population. In this context, solar still may serve as an efficient solution for addressing pure water shortage in hot climatic areas facing scarcity of water. Solar still is a very simple device that can be used for converting the available non-potable water into potable water. Various water purifiers based on solar energy have been proposed in literature but most of them are having low water output. This paper presents a novel method of a solar water purifier operating under vacuum to enhance its productivity. An experimental investigation of a scaled model has been carried out and it was observed that productivity of solar still increases with decrease in pressure inside the still.


Author(s):  
Hitesh Panchal ◽  
Vipul Patel ◽  
Vinod Prajapati ◽  
Dharmendra Patel ◽  
Haresh Patel ◽  
...  

Exhaust gas temperature of diesel engine is higher compared with a petrol engine and also creates higher pollution in the environment. Exhaust gas recirculation system and many other systems have used for reuse of exhaust gas to improve the performance of diesel engine, but the use of diesel engine for production of potable water production is still unattended by the researchers. The main aim of this research work is to use the waste heat of exhaust gas for potable water production from the low capacity desalination system integrated with evaporator and condenser unit. In this work, single pass evaporator and water cooled condenser used for evaporation and condensation of saline water were designed and fabricated by locally available materials. The experiments were performed on a 10 HP Diesel engine with varying the load to get potable water. It has found that, 4.2 Liter/hr of potable water is obtained from the exhaust gas without varying the performance of the engine. Also, it has found that, temperature of saline water is heated more than 70 degrees Celsius in the condenser unit.


2018 ◽  
Vol 5 (2) ◽  
pp. 124-133
Author(s):  
S.M. Atnaw ◽  
R.M. Ramli ◽  
S.A. Rusdah ◽  
T. Marimuthu ◽  
P. Mardarveran ◽  
...  

Direct sunlight has been utilized long back for desalination of water. Solar still is a device that converts saline water to potable water. This project mainly discussed about point-focus parabolic solar still (PPSS). Since lack of water supply has become a serious problem today, this prototype is design to produce fresh water from saline water to enable continuous supply of water. However, the current solar desalination generation capacity is generally low and has high installation cost. Hence, there is a need for the enhancement of the productivity which can be achieved through point focus parabolic solar still. Existing PPSS produces of 3.56 L/m2 fresh water of per day. In this project, we have some modifications which will increase the productivity of PPSS.


Author(s):  
Jamasb Pirkandi ◽  
Farshid Kassaei ◽  
Mahdi Hashemabadi

Abstract In this research, the performance of stepped solar still has been experimentally evaluated. For this purpose, a parabolic trough collector has been used to preheat the saline water entering the solar still. Also, two flat external reflectors have been employed to increase the amount of solar energy received by the steps and the collector of the system. The findings of this research indicate that the use of two flat external reflectors is more effective than using the trough collector. Also, it is more efficient to apply both mechanisms simultaneously than to use them separately. According to the obtained results, the distilled water output of the solar still is 760, 1,560, 2,440 and 2,760 ml/m2, respectively, for operating the conventional solar still, using the trough collector, using the two flat external reflectors, and using the collector and reflectors simultaneously. The electrical conductivity due to the presence of salt and chemical substances dissolved in the distilled water discharged from the still is 255, 215, 62 and 38 micro Siemens per centimetre, respectively, for each of the four mentioned cases. These experiments show that by applying the proposed mechanisms, the amount of distilled water can be increased, and its purity can be enhanced.


2021 ◽  
Author(s):  
Fathia El Mokh ◽  
Kamel Nagaz ◽  
Ashok Kumar Alva ◽  
Mohamed Moncef Masmoudi ◽  
Netij Ben Mechlia

Sign in / Sign up

Export Citation Format

Share Document