Yield and inter-specific interactions in maize/chickpea intercrop under different application rates of P in irrigated sierozem along the Yellow River in Northwest China

2010 ◽  
Vol 18 (5) ◽  
pp. 917-922
Author(s):  
Yu-Feng LAN ◽  
Hai-Yong XIA ◽  
Hong-Liang LIU ◽  
Si-Cun YANG ◽  
Jian-Guo SONG ◽  
...  
2014 ◽  
Vol 18 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Peiyue Li ◽  
Jianhua Wu ◽  
Hui Qian

<p class="MsoNormal" style="line-height: 200%;">Statistical analyses, a Piper diagram, the saturation index and the correlations of chemical parameters were used to reveal the hydrogeochemistry and hydrogeochemical evolution of shallow groundwater in the southern part of the Zhongwei section of the Yellow River alluvial plain. The water quality for agricultural and domestic uses was also assessed in the study. The results suggest that the shallow groundwater in the study area is fresh to moderately mineralized water. Higher Ca<sup>2+</sup> and HCO<sub>3</sub><sup>-</sup> are observed in the less mineralized water, whereas Na<sup>+</sup> and SO<sub>4</sub><sup>2-</sup> are common ions in the highly mineralized water. The major hydrochemical facies for groundwater with total dissolved solids (TDS) &lt;1 g/L are HCO<sub>3</sub>-Ca·Mg and HCO<sub>3</sub>-Ca·Na·Mg, and for groundwater with TDS &gt; 1 g/L, SO<sub>4</sub>·Cl-Na and SO<sub>4</sub>·Cl-Na·Mg·Ca are the predominant hydrochemical types. The main reactions in the groundwater system are the dissolution/precipitation of gypsum, fluorite, halite, calcite and dolomite. Cation exchange is also important in controlling the groundwater chemistry. The water samples assessed in the paper are of acceptable quality for agricultural use, but most of them are not fit for direct human consumption (drinking). TDS, total hardness (TH), Cl<sup>-</sup> and SO<sub>4</sub><sup>2-</sup> are the main indices that result in the poor drinking water quality.</p><p class="MsoNormal" style="line-height: 200%;"> </p><p class="MsoNormal" style="line-height: 200%;"><strong>Resumen</strong></p><p>Análisis estadísticos, un diagrama de Piper, el índice de saturación y la correlación de los parámetros químicos fueron utilizados para revelar la hidrogeoquímica y la evolución hidrogeoquímica de las aguas subterráneas poco profundas en la parte sur de la sección Zhongwei en la planicie aluvial del río Amarillo. La calidad del agua para el uso doméstico y agrícola también fue evaluada en este estudio. Los resultados sugieren que las aguas subterráneas poco profundas en el área de estudio son entre frescas y moderadamente mineralizadas. Un índice mayor de Ca2+ y HCO3- se observó en las aguas menos mineralizadas, mientras que Na+ y SO42- son iones comunes en las aguas altamente mineralizadas. Los perfiles hidroquímicos predominantes para las aguas subterráneas con Total de Sólidos Disueltos (TDS) &lt;1 g/L son HCO3-Ca·Mg y HCO3-Ca·Na·Mg, y para las aguas subterráneas con TDS &gt;1 g/L, SO4·Cl-Na y SO4·Cl-Na·Mg·Ca. Las mayores reacciones en el sistema de aguas subterráneas son la disolución/ precipitación de yeso, fluorita, halita, calcita y dolomita. El intercambio de cationes también es importante en el control de la química de las aguas subterráneas. Las muestras de agua evaluadas en este manuscrito son de calidad aceptable para el uso agrícola, pero la mayoría no son aptas para el consumo humano. El índice TDS, la dureza total del agua (TH), Cl- y SO42- son las razones principales que influyen en la baja calidad de esta agua.</p>


2018 ◽  
Vol 54 (2) ◽  
pp. 104-114
Author(s):  
Xiuyan Jing ◽  
Hongbin Yang ◽  
Na Wang

Abstract The chemical evolution of groundwater has received close attention from hydro-geologists. Northwest China largely consists of arid and semi-arid regions, where surface water and groundwater frequently exchange with each other, and where the mixing and water–rock interactions significantly affect the direction of water quality evolution. Based on experimental simulation, this paper investigates the interactions among the Yellow River water, groundwater and rocks in Yinchuan. The study found that when groundwater is mixed with the Yellow River water, the Yellow River water has a certain dilution effect on the hydro-chemical composition of groundwater; however, this effect is not simply diluted by proportion for no reaction between irons, but a portion of calcium, sulfur, and carbonate form precipitates. After mixing of the Yellow River water, groundwater and rocks, the pH increased, and the carbon dioxide system reached equilibrium again. In addition, CO32− was produced. While Na+ increase was mainly due to dissolution, SO42− decrease was because of precipitation. The precipitation or dissolution of Ca2+, Mg2+, and CO32− mainly depended on the mixing ratio between groundwater and river water, which suggested the reversible behavior of the dissolution-precipitation of carbonate minerals.


2021 ◽  
Author(s):  
YongFeng Gong ◽  
Xin Liu ◽  
Bin Ma ◽  
PengFei Qi ◽  
Yan Li

Abstract Irrigation water extracted from the Yellow River plays a key role in water resource management in the Yinchuan Plain (YCP), arid Northwest China. Investigating the soluble matters (ion and gas) of groundwater provides information to explain the unconfined shallow aquifer recharge and groundwater mineralization processes after long-term flood irrigation activity. Environmental tracing with the elements, 2H, 18O, 3H, and CFCs, combining geochemistry using major ions and selected trace elements, was conducted for 43 water samples from September to October 2019 in the YCP. Evaporite and silicate weathering dominate the shallow unconfined groundwater geochemical compositions. Water–rock interactions control the mineralization characteristics regularly along the groundwater flow paths from the southwest toward the northeast. Stable isotopes suggest that Yellow River water and precipitation in winder and/or from Helan Mountainous area are the main recharge sources. The shallow unconfined aquifer mixed young (post-1940) and old (pre-1940) water with young water ratios from 53.1 to 73.5% inferred from the CFC concentrations and 3H activities. Water reinfiltrations extracted from the Yellow River and from the old groundwater are confirmed. Lateral flow recharge for the shallow unconfined aquifer is less indistinctive than that from the water re-infiltration in the plain areas.


Author(s):  
David SG Goodman

The reform of state socialism came relatively late to Qinghai Province in the Northwest of the People’s Republic of China. One of Qinghai’s most dynamic groups in the social leadership of reform has been the Salar. The Salar were one of the officially recognized nationalities identified in the People’s Republic of China during the 1950s. A relatively small group of some 100,000 currently live along the upper reaches of the Yellow River, on the borders of Qinghai and Gansu Provinces. The Salar are characterised by their commitment to both Islam and China, and by their belief that they live in permanent exile, though there is considerable uncertainty about their origins. The evidence of recent research in Qinghai suggests the perspective of being Chinese citizens, yet a people in exile, significantly shapes recent Salar social and economic activism.


2018 ◽  
Vol 14 (1) ◽  
pp. 245-254 ◽  
Author(s):  
Yang LI ◽  
◽  
Zhixiang XIE ◽  
Fen QIN ◽  
Yaochen QIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document