scholarly journals Mapping the Physical Properties of Soils and the California Bearing Ratio (CBR) Value for Different Soil Types: A Case Study in the Bukit Kemuning and Pugung Tampak Areas

2022 ◽  
Vol 18 ◽  
pp. 90-99
Author(s):  
Lusmeilia Afriani ◽  
Nursyirwan Nursyirwan ◽  
Ryzal Perdana ◽  
Rina Febrina ◽  
Yan Juansyah

It is widely accepted that soil is a mixture of mineral constituents that have accumulated over time. The physical characteristics of soil vary according to the mineral and organic matter content and the process of formation. The soil`s unique characteristics have been the subject of research in the field of civil engineering, which has continued to evolve to the present day due to the land`s requirement for civil engineering construction, such as road paving. As a result, the current study sought to determine the similarity of soil samples based on their physical properties and California Bearing Ratio (CBR) values, as well as the relationship between the soil`s physical properties and CBR values. To our knowledge, there is hardly little research in the literature investigating the topic under our investigation. Furthermore, we also mapped the physical characteristics and CBR values of numerous distinct soil samples using a Geographical Information System (GIS). This study concentrated on the West Lampung Regency, specifically the area between Bukit Kemuning in Central Lampung and Liwa in West Lampung, along the lines of Bukit Kemuning, Liwa, and Krui, all the way to the Lampung – Bengkulu province border. The soil samples from the area were taken for two tests: the unsoaked CBR test and the soaked CBR test. The results of the tests show that a 31-kilometre distance does not result in a significant difference in soil properties, which are generally similar except in clay-rich areas. Furthermore, the results of the laboratory analysis show that the amount of water in the soil sample affects the Liquid Limit (LL), Plastic Limit (PL), Maximum Dry Density (MDD), and CBR values; the lower the plastic limit value, and thus the lower the CBR value, the less water in the soil. The implications of the current findings are also discussed.

2021 ◽  
Vol 40 (1) ◽  
pp. 28-38
Author(s):  
Pascal Ambrose ◽  
Siya Rimoy

California Bearing Ratio (CBR) laboratory testing is the conventional method for determining soaked strengths of pavement subgrades. The test requires careful preparation of soil samples followed by four days of water soaking before penetrating the samples using a standard plunger at prescribed rates to set depths. When the number of samples becomes large the determination of soaked CBR values becomes cumbersome as the test is laborious and time consuming. This study aimed at establishing an alternative way of determining soaked CBR by developing a model that would be used for estimating soaked CBR of fine- and coarse- grained soils without performing the CBR test. This has been achieved by correlating CBR values compacted at 95% Maximum Dry Density (MDD) with the soil index properties. The results show that soaked CBR values of fine-grained soils significantly correlate with specific gravity of soil (GS), Plasticity index (PI) and the grading modulus (GM) of the soil that yields a degree of determination of R2 = 0.91 and for coarse grained (A-2 type) soil, the soaked CBR values significantly correlate with specific gravity of soil and percentage of fines passing 0.075mm sieve size that yields a degree of determination of R2= 0.94.


2019 ◽  
Vol 3 (2) ◽  
pp. 31-35
Author(s):  
Gusti Alvin Erliawan ◽  
Muhammad Firdaus

Land is a very important basic material in a construction, because basically the soil serves as the object of all types of konstruki and as a base they saw on a structure must have the nature and power of a good support, ground the sand mixture is stabilized with 10% coconut fibres 1% ash, sand mix 10% ash 3% coconut fibers, sand mix 10% coconut fibres 5% ash. Research done in the laboratory of Geotechnical and Civil Engineering Transfortasi State Polytechnic Banjarmasin, testing is done at the programme LEVEL include: Testing water content in accordance with SNI 03-1965-2008, Heavy Type Testing in accordance with SNI 03-1964-2008, testing the limits of Liquid in accordance with SNI 03-1967-2008, testing the limits of Plastis accordance with SNI 03-1966-2008, Compaction Testing in accordance with STANDARD 03-1743-2008, and California Bearing Ratio Testing in accordance with STANDARD 03-1744-2012. From the results obtained by testing the value of the physical properties and mechanical ground on mixed 0%: 69.15% w, Gs 2.505, LL 49.50%, PL 31.64%, PI 13.61% 27.5% opt, w, Y d max 1.268 Gr/Cm3, CBR design 3.1%. From the results obtained by testing the value of the physical properties and mechanical Sand mixture soil at 10% Coconut Fibres 1% Ash: Gs (combined), 2.369 LL 49.55%, PL 33.18% PI, 16.37%, w opt 35.25%, Yd max 1.178 Gr/Cm3, CBR design of 6.8%. From the results obtained by testing the value of the physical properties and mechanical ground on mixed Sand Ash 10% 3% Coconut Fibres: Gs (combined), 2.369 LL 49.50%, PL 34.08% PI, 15.42%, w opt 25.50%, Yd max 1.205 Gr/Cm3, CBR design of 7.3%. From the results obtained by testing the value of the physical properties and mechanical Sand mixture soil at 10% Coconut Fibres 5% Grey: Gs (combined) 2.668, LL 49.40%, PL 35.79%, 13.61% PI, w opt 20.45%, Yd max 1.315 Gr/Cm3, CBR design 8.0%.


Lateritic soils at Otun Ekiti, Ekiti state, southwestern Nigeria were investigated with respect to their geotechnical properties and their suitability for subgrade and sub – base construction materials. Four disturbed lateritic soil samples (sample A, B, C and D) were selected for the various laboratory techniques. The grain size analyses, the specific gravity tests, the atterberg limit tests, compaction, California bearing ratio and shear box tests were carried out on the samples. The grain size analysis shows that sample A is gravelly silt-clayey sand. Sample B is silt – clayey gravel composition. Sample C is gravelly silt-clayey while Sample D is silt-clayey gravel. Atterberg consistency limit test indicate that sample A has 30.0%, liquid limit 19.5% plastic limit, 10.5% plasticity index, 9.1% shrinkage limit. Sample B has liquid limit of 27.0%, 16.2% plastic limit, 10.8% plasticity index and 7.4% shrinkage limit. Sample C has a liquid limit of 32.4%, plastic limit of 15.6%. It has a plastic index of 16.8%, Shrinkage limit of 9.7% while Sample D has a liquid limit of 36.2%, plastic limit of 17.7%. It has a plastic index of 18.5% and 11.1% as shrinkage limit. Thus, the soil is classified to be intermediate plasticity which can be used for sub – grade and sub – base materials. The soil samples are above the activity (A) line in the zone of intermediate plasticity (CL) which suggests that they are inorganic soils. Based on engineering use chart, the workability as construction engineering is good to fair particularly as erosion resistance in canal construction. However, the high shrinkage limit may also reduce erosion in this area because of cohesion of the plastic clay material. The California Bearing Ratio (CBR) values are within 2 – 3% (mean = 2.75%) and 2 - 4% (mean = 2.75%) in sample A and sample B respectively while California Bearing Ratio (CBR) of 2 - 4% (mean = 2.75%) and 2 – 3% (mean = 2.75%) in sample C and sample D respectively. This implies that the materials can be used as a sub-grade to base course material for support of flexible pavements. The compaction tests for the optimum water content for sample A is 15.0% and 13.0% for standard and modified proctor respectively. The standard and modified proctor for sample B is 15.0% and 14.0% respectively. The compaction tests for the optimum water content for sample C and D is 15.0% and 14.0% for standard and modified proctor respectively. The compaction tests for Sample A indicate a higher fine fraction and thus a higher optimum moisture content while sample B, C and D has higher coarse fraction with lower optimum moisture content. The cohesion falls within 70-90Kpa (mean = 79Kpa) and the angle of internal friction ranges from 260 - 320 with mean of 280 for standard and modified compaction energies respectively. The results obtained from geotechnical analysis suggest that the soil is good to fair as erosion resistance in canal construction because of its high bearing capacity and it can also be used as sub – grade and base course in road construction. Keywords: Lateritic soil, Construction, Erosional and Geotechnical.


2019 ◽  
Vol 9 (2) ◽  
pp. 93-99
Author(s):  
Hunar F. Hama Ali ◽  
Ahmed J. Hama Rash ◽  
Madeh I. Hama kareem ◽  
Daban A. Muhedin

This paper addresses the correlation between the liquid and/or plastic limits with the compaction characteristics, maximum dry density, and optimum moisture content (OMC), for fine-grained soils. In the previous studies, several attempts have been made to identify these two important parameters from other simple soil properties such as index soil properties. Some concluded that liquid limit shows a good correlation with compaction characteristics, while others observed that plastic limit does. In this work, many soil samples have been taken from various locations around Koya city and the required tests have been carried out. The results have been illustrated to identify whether soil index properties can correlate with the compaction characteristics. It is concluded that neither plastic limit nor liquid limit can provide an adequate correlation with maximum dry density and OMC. Contrary to the literature, liquid limit provides better correlations.


2018 ◽  
Vol 195 ◽  
pp. 03003
Author(s):  
Agus Setyo Muntohar ◽  
Willis Diana ◽  
Edi Hartono ◽  
Anita Widianti

In Indonesia, many main roads have been constructed on problematic soil. The chemical improvement is widely used to shallow soil modification and stabilization. This paper introduces the use of a SiCC column to strengthen the load-bearing capacity of the expansive soil. In the road pavement design, California Bearing Ratio (CBR) is a most useful parameter to define the pavement layers. Hence, this paper is aimed to investigate the effect of SiCC column on the CBR of compacted expansive soil. Two groups of specimens were prepared for CBR test under soaked condition. A set of specimens are prepared on the wet side (Specimen A), and a set of specimens are compacted on the dry side of optimum moisture content (Specimen B). The objective of this research is to determine the effect of moisture content and dry density on the CBR value. The experiment results show that the SiCC column significantly increases the CBR of expansive soil on both dry and wet side of optimum moisture content. The specimen compacted on the dry side exhibit a higher CBR than the specimen compacted on the wet side of optimum moisture content.


2020 ◽  
Vol 8 (2) ◽  
pp. 35
Author(s):  
Thompson Henry Tolulope Ogunribido ◽  
Tunde Ezekiel Fadairo

Twenty soil samples collected from the failed portions in the study area were air dried for two weeks before analyses. Each soil samples were subjected to eight engineering tests which include: natural moisture content, atterberg limit, specific gravity, compaction, unconfined compressive strength, California bearing ratio, grain size and hydrometer analysis. Results showed that the natural moisture content ranged from 17.7% to 37.8%, liquid limit from 48.5% to 62.4%, plastic limit from 18.3% to 26.8%, plasticity index from 25.7% to 37.7%, shrinkage limit from 5.8%-12.5%, optimum moisture content from 14.2% to 32.4%, maximum dry density from 1301 Kg/rn3 to 2002 Kg/rn3. Soaked California bearing ratio ranged from 5% to 17%, unsoaked from 15% to 38%, specific gravity from 2.5 to 2.68, unconfined compressive strength r from 112.8 Kpa to 259.7 Kpa, shear strength from 56.4 Kpa to 129.9 Kpa and hydrometer analysis from 48.5% to 72.1%. Based on the Federal Government specifications for pavement construction, for the soil to be suitable, stabilization with bitumen, Portland cement, lime, coal fly ash, and saw dust should be done. Road pavement failure along Arigidi – Oke Agbe road was due to poor engineering geological condition of the sub-grade soils and poor drainage systems.  


2020 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
G.O Adunoye ◽  
A.A Ojo ◽  
A.F Alasia ◽  
M.O Olarewaju

The importance of soil compaction for civil engineering construction and application cannot be over-emphasised. To perform soil compaction, numerous number of samples are required, with considerable time and laborious laboratory activities. This has necessitated the need to find models for the prediction of compaction characteristics, using easily determined soil properties. This work therefore undertook a study of the correlation potential of compaction characteristics and Atterberg limits of soils, with a view to modelling compaction characteristics, using Atterberg limits. To achieve this aim, soil samples were obtained from selected locations within Obafemi Awolowo University campus, Ile-Ife, Nigeria. Preliminary, Atterberg limits and compaction tests were conducted on the soil samples, using standard procedure. Using Microsoft Excel and Xuru’s Regression tool, the laboratory test results were used to develop relationships between compaction characteristics (optimum moisture content and maximum dry density) and Atterberg limits (liquid limit and plastic limit). Results showed that the natural moisture content of soil samples ranged between 4.97 % and 19.72 %; liquid limit ranged between 27 % and 68 %; plastic limit ranged between 18.92 % and 63.01 %; and plasticity index ranged between 0.94 % and 14.63 %. The optimum moisture content ranged between 6.7 % and 27 %, while the maximum dry density ranged between 1560 kN/m3 and 2260 kN/m3. The results of regression analysis showed that the combination of liquid limit and plastic limit has a strong correlation with optimum moisture content (R2 = 0.870); while the combination (of liquid limit and plastic limit) showed a weak correlation with maximum dry density (R2 = 0.150). The study concluded that liquid limit and plastic limit could be used to estimate the optimum moisture content of the soils, by applying the developed relationship/equation.  


Author(s):  
Nuril Mahda Rangkuti

Land is an important element of the structure underneath a construction, so that the soil must have a good carrying capacity. But the reality on the ground is that many soils have low carrying capacity, so it is necessary to stabilize the soil with gypsum and cement. This study aims to determine the effective percentage of gypsum and cement addition and the effect of the addition of Gypsum and Cement to physical changes in clay soil in terms of the CBR (California Bearing Ratio) value of the curing time. This research was conducted in the laboratory, by testing the physical properties of the soil and the carrying capacity of the soil (CBR) with variations in the addition of gypsum and cement by 1%, 3%, and 5% with a long curing time of 1, 7, and 14 days . Sample testing is carried out with two treatments, namely soil samples are first cured and then compacted and the sample is solidified first and then cured. From the research results obtained the largest CBR (California Bearing Ratio) value occurs in the variation of the addition of Gypsum and Cement 5% with the length of time for soil specimens to be compacted first before curing is equal to 41.54%, this is due to the mixture of soil with gypsum and cement has been manjai solid before the collection can occur, the cavities between soil particles also become solid, so that the strength also increases. From the California Bearing Ratio results, it can be seen that the addition of gypsum and cement to clay soil shows an increase in the value of California Bearing Ratio on clay.


Alloy Digest ◽  
2003 ◽  
Vol 52 (5) ◽  

Abstract Domex 110XF is a very-high-strength steel that is used for automotive and civil engineering structural components. This datasheet provides information on composition, physical properties, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on heat treating and joining. Filing Code: SA-512. Producer or source: SSAB Swedish Steel Inc.


2021 ◽  
pp. 004051752110550
Author(s):  
Norina Asfand ◽  
Virginija Daukantienė

Different fiber blends, knit patterns, and treatments may be applied to increase the functionality and comfort of knitted fabrics. In this research, the physical properties and bending stiffness of 1 × 1 rib and half-milano rib fabrics with four fiber blends (90% cotton/10% antistatic PET, 80% cotton/20% antistatic PET, 70% cotton/30% antistatic PET, and 65% cotton/35% antistatic PET) applied to each knit pattern were studied. The effect of fabric direction (course and wale), technical side (face side and back side), and treatment (dying, softening with Aquasoft® SI hydrophilic softener, and Polygiene VO-600 antibacterial finish) on the physical characteristics and bending stiffness of the fabrics was evaluated. The results revealed that dyeing and softening increased the fabric area density and both wale and course densities and decreased fabric thicknesses compared to the control fabrics. The antibacterial finish applied to the softened samples did not change the physical properties. Bending stiffness in the course direction was lower than in the wale direction, and it was higher for technical face samples than for technical back ones. The 1 × 1 rib knitted fabrics showed lower stiffness than the half-milano rib fabrics. Treatment of the investigated fabrics decreased bending stiffness for both treatment sample groups compared to the control group.


Sign in / Sign up

Export Citation Format

Share Document