scholarly journals 24 Sectors DTC Control with Fuzzy Hysteresis Comparators for DFIM Fed by the Three-level NPC Inverter

2022 ◽  
Vol 12 ◽  
pp. 141-154
Author(s):  
Abderrahmane Moussaoui ◽  
Habib Benbouhenni ◽  
Djilani Ben Attous

This article presents 24 sectors direct torque control (DTC) with fuzzy hysteresis comparators for the doubly-fed induction motor (DFIM) using a three-level neutral point clamped (NPC) inverter. The designed DTC technique of the DFIM combines the advantages of the DTC strategy and fuzzy logic controller. The reaching conditions, stability, and robustness of the DFIM with the designed DTC technique are guaranteed. The designed DTC technique is insensitive to uncertainties, including parameter variations and external disturbances in the whole control process. Finally, the designed DTC technique with fuzzy hysteresis comparators is used to regulate the electromagnetic torque and the flux of the DFIM fed by the three-level NPC inverter and confirms the validity of the designed DTC technique. Results of simulations containing tests of robustness and tracking tests are presented.

Author(s):  
Mustefa Jibril

This article presents 24 sectors direct torque control (DTC) with fuzzy hysteresis comparators for the doubly-fed induction motor (DFIM) using a three-level neutral point clamped (NPC) inverter. The designed DTC technique of the DFIM combines the advantages of the DTC strategy and fuzzy logic controller. The reaching conditions, stability, and robustness of the DFIM with the designed DTC technique are guaranteed. The designed DTC technique is insensitive to uncertainties, including parameter variations and external disturbances in the whole control process. Finally, the designed DTC technique with fuzzy hysteresis comparators is used to regulate the electromagnetic torque and the flux of the DFIM fed by the three-level NPC inverter and confirms the validity of the designed DTC technique. Results of simulations containing tests of robustness and tracking tests are presented.


2014 ◽  
Vol 573 ◽  
pp. 155-160
Author(s):  
A. Pandian ◽  
R. Dhanasekaran

This paper presents improved Fuzzy Logic Controller (FLC) of the Direct Torque Control (DTC) of Three-Phase Induction Motor (IM) for high performance and torque control industrial drive applications. The performance of the IM using PI Controllers and general fuzzy controllers are meager level under load disturbances and transient conditions. The FLC is extended to have a less computational burden which makes it suitable for real time implementation particularly at constant speed and torque disturbance operating conditions. Hybrid control has advantage of integrating a superiority of two or more control techniques for better control performances. A fuzzy controller offers better speed responses for startup and large speed errors. If the nature of the load torque is varied, the steady state speed error of DTC based IM drive with fuzzy logic controller becomes significant. To improve the performance of the system, a new control method, Hybrid fuzzy PI control is proposed. The effectiveness of proposed method is verified by simulation based on MATLAB. The proposed Hybrid fuzzy controller has adaptive control over load toque variation and can maintain constant speed.


Author(s):  
Lallouani Hellali ◽  
Saad Belhamdi

<p>This paper presents the simulation of the control of doubly star induction<br />motor using Direct Torque Control (DTC) based on Proportional and Integral<br />controller (PI) and Fuzzy Logic Controller (FLC). In addition, the work<br />describes a model of doubly star induction motor in α-β reference frame<br />theory and its computer simulation in MATLAB/SIMULINK®.The structure<br />of the DTC has several advantages such as the short sampling time required<br />by the TC schemes makes them suited to a very fast flux and torque<br />controlled drives as well as the simplicity of the control algorithm.the<br />general- purpose induction drives in very wide range using DTC because it is<br />the excellent solution. The performances of the DTC with a PI controller and<br />FLC are tested under differents speeds command values and load torque.</p>


2010 ◽  
Vol 6 (2) ◽  
pp. 131-138
Author(s):  
Turki Abdalla ◽  
Haroution Hairik ◽  
Adel Dakhil

This paper presents a method for improving the speed profile of a three phase induction motor in direct torque control (DTC) drive system using a proposed fuzzy logic based speed controller. A complete simulation of the conventional DTC and closed-loop for speed control of three phase induction motor was tested using well known Matlab/Simulink software package. The speed control of the induction motor is done by using the conventional proportional integral (PI) controller and the proposed fuzzy logic based controller. The proposed fuzzy logic controller has a nature of (PI) to determine the torque reference for the motor. The dynamic response has been clearly tested for both conventional and the proposed fuzzy logic based speed controllers. The simulation results showed a better dynamic performance of the induction motor when using the proposed fuzzy logic based speed controller compared with the conventional type with a fixed (PI) controller.


Sign in / Sign up

Export Citation Format

Share Document