The Garies Wollastonite Deposit, Namaqualand, South Africa: High-Temperature Metamorphism of a Low-δ18O Skarn?

Author(s):  
Chris Harris ◽  
Lucrecia Maboane

ABSTRACT The Garies wollastonite deposit is located in the Bushmanland terrane of the Namaqualand Metamorphic Province and is part of a discontinuous calc-silicate unit bounded by granulite facies gneiss that experienced peak metamorphic temperatures above 800 °C. In bulk, the deposit is dominated by wollastonite, but varied proportions of garnet, diopside, quartz, calcite, and vesuvianite are also present. Mineral chemistry variations across the deposit are minor, and the absence of inclusions indicates textural and chemical equilibrium. The wollastonite-bearing rocks have unusually low mineral δ18O values: –0.6 to +2.2‰ for garnet, –0.2 to +2. 6‰ for clinopyroxene, and –0.2 to +0.4‰ for wollastonite. Calcite δ18O values range from 6.8 to 11. 8‰ and δ13C values from –6.4 to –3.2‰. Calcite δ18O values are unusually low for calc-silicate rocks, but Δcalcite-garnet values from 3 to 12‰ indicate O-isotope disequilibrium between calcite and the silicate minerals. Garnet-biotite metapelitic and diopside gneisses have unexpectedly low δ18O values (<7‰). The approach to O-isotope equilibrium displayed by coexisting silicate minerals, and low mineral δ18O values in calc-silicate and metapelite and metapsammite gneisses, is consistent with low δ18O values being acquired before peak metamorphism. Low δ18O values in the minerals of the calc-silicate rocks require interaction with external fluid at high water/rock ratio. We suggest that the deposit represents a metamorphosed skarn that developed at the contact between the original carbonate rocks and intruding felsic magmas.

2004 ◽  
Vol 68 (4) ◽  
pp. 687-697 ◽  
Author(s):  
H. Satoh ◽  
Y. Yamaguchi ◽  
K. Makino

AbstractAmphibole in the Larvik alkaline plutonic complex in the Oslo rift, Norway, has Ti-rich compositions from edenite through pargasite to kaersutite, and has a large H+ deficiency (0.7–1.1 atoms per formula unit: a.p.f.u.) with a large oxy component in the amphibole OH– site (O2– = 2 – (OH + F + Cl) = 0.2–0.9 a.p.f.u.), similar to the mantle-derived kaersutites. Their compositions reveal a characteristically low Fe3+/(Fe3++Fe2+) ratio (<0.23) and a high F concentration (0.3–0.9 a.p.f.u.). Correlation with the Fe3+ ratio caused by Fe2+ + OH– = Fe3+ + O2– + 1/2H2 substitution is negligible, which is supported by H and O isotope compositions. A possible substitution, [6]Al3+ + OH– = [6]Ti4+ + O2– may be operative for Larvik kaersutites when the O2–/Ti is 1.0. A relatively larger O2–/Ti ratio (1.2—2.0) suggests an another kaersutite substitution mechanism, [6]R2+ + 2OH– = [6]Ti4+ + 2O2–, where [6]R2+ = Fe2+ + Mg + Mn. These effects might result in the limited O2–/Ti ratio value from 1.0 to 2.0.A negative correlation between Ti and F, suggesting F incorporation into kaersutite may diminish the O2–/Ti ratio, not only due to the occupation of this non-oxy species in the O3 site, but also due to F—Ti avoidance. Composition-dependent H and O isotope variations (δD = –106 to –71% and δ18O = 4.6–5.2%) suggest equilibrium in the closed-system magma with differentiation. The mineral chemistry of Larvik oxy-kaersutitic amphibole could reflect the crystallization in a closed-system magma during rifting with passive crustal thinning at the Oslo palaeorift.


1993 ◽  
Vol 57 (386) ◽  
pp. 113-120 ◽  
Author(s):  
Somnath Dasgupta ◽  
Pulak Sengupta ◽  
A. Mondal ◽  
M. Fukuoka

AbstractThree types of mafic granulites, namely two pyroxene-plagioclase granutite (MG), two pyroxeneplagioclase-garnet granulite (GMG) and spinel-olivine-plagioclase-two pyroxene granulite (SMG) are exposed at Sunkarimetta, Eastern Ghats belt, India. The marie granulites exhibit a foliation concordant with that in associated granulite facies quartzofeldspathic gneisses. Textural characteristics and mineral chemical data suggest the following mineral reactions: olivine + plagioclase = spinel + orthopyroxene + clinopyroxene (SMG), orthopyroxene + plagioclase = garnet + quartz (GMG), clinopyroxene + plagioclase = garnet + quartz (GMG) and plagioclase + hemoilmenite + quartz = garnet + ilmenite + 02 (GMG). Geothermobarometry indicates maximum P-T conditions of metamorphism at c. 8.5 kbar, 950°C The marie granulites later suffered nearly isobaric cooling to c. 7.5 kbar, 750°C Bulk compositional characteristics suggest that SMG is of cumulate origin. The protoliths of the mafic granulites, emplaced at c. 32 km depth, are probably responsible for thermal perturbation causing granulite facies metamorphism of the enclosing rocks.


2020 ◽  
Vol 90 (4) ◽  
pp. 389-402 ◽  
Author(s):  
Md. Iftekhar Alam ◽  
Ashraf Uddin ◽  
Willis E. Hames

ABSTRACT Permo-Carboniferous Gondwanan sequences have been reported from several isolated basins of Peninsular India. These siliciclastic sequences were preserved in several intracratonic basins in northwest Bangladesh. Sandstone petrography, heavy-mineral assemblages, mineral chemistry, and 40Ar/39Ar geochronology of sediment cores were used in this study to decipher the provenance history of Gondwanan sediments at two localities (Khalashpir and Barapukuria). Petrographic studies suggest that these sequences are mostly immature and poorly sorted arkosic sandstones (Khalashpir-Qt60F27L13, Barapukuria-Qt52F31L17), with compositions ranging from quartzarenite to litharenite. Among lithic fragments, sedimentary types are abundant. Heavy minerals are volumetrically rare and of low diversity in sediments of northwest Bangladesh. Garnet geochemistry indicates that metamorphic grades in the source terranes were of the amphibolite to granulite facies. Laser 40Ar/39Ar ages for single crystals of detrital muscovite from the deepest drilled Gondwanan sequences yielded the broadest age range, with a dominant mode at circa 515 Ma and lesser clusters of ages at circa 550, 570, and 600 Ma. The other two shallower samples are dominated by ages with similar single modes at circa 495–500 Ma. The oldest muscovite crystals may have been derived from the adjacent Indian craton and/or the Meghalayan craton. Younger muscovite crystals may have been contributed from the Pinjarra Orogen, formed during episodes of Neoproterozoic to early Paleozoic collision among India, Antarctica, and Australia.


2019 ◽  
Vol 12 (21) ◽  
Author(s):  
Mir Ali Asghar Mokhtari ◽  
Hossein Kouhestani ◽  
Kazem Gholizadeh

Abstract The Qozlou Fe skarn deposit is located at the Abhar–Mahneshan belt of the Central Iranian Zone. It is associated with Upper Eocene porphyritic granite that intruded into the Upper Cretaceous impure carbonaceous rocks. The Qozlou granite has high-K calc-alkaline affinity and is classified as subduction-related metaluminous I-type granitoids. Skarn aureole in the Qozlou is composed of endoskarn and exoskarn zones, with the exoskarn zone being the main skarn and mineralized zone. It includes garnet skarn, garnet-pyroxene skarn, pyroxene skarn, epidote skarn, and pyroxene-bearing marble sub-zones. The Qozlou Fe deposit is 300 m long and 5–30 m wide. Magnetite is the main ore mineral associated to pyrite, chalcopyrite, and pyrrhotite. Garnet, clinopyroxene, actinolite, epidote, calcite, and quartz occur as gangue minerals. Covellite, hematite, and goethite were formed during the supergene processes. The ore and gangue minerals have massive, banded, disseminated, brecciated, vein–veinlets, replacement, and relict textures. EPMA data indicate that garnets have andradite–grossularite compositions (Ad39.97–100–Gr0–49.62) and clinopyroxenes have diopsidic composition (En29.43–42.5–Fs14.31–20.99–Wo43.08–50.17). Based on mineralogical and textural criteria, skarnification processes in the Qozlou skarn can be categorized into three discrete stages: (1) isochemical (metamorphic–bimetasomatic), (2) metasomatic prograde, and (3) metasomatic retrograde. Anhydrous calc-silicate minerals (garnet and clinopyroxene) were formed during the prograde metasomatic stage, while ore minerals and hydrous calc-silicate minerals were formed during the retrograde ore-forming sub-stage. Temperature and ƒO2 conditions range between 430 and 550 °C and 10−26 and 10−23, respectively, for the metasomatic prograde stage. The retrograde metasomatizing fluids had likely ƒS2 = 10−6.5 and temperatures < 430 °C at the beginning of the ore-forming sub-stage.


2003 ◽  
Vol 67 (3) ◽  
pp. 423-451 ◽  
Author(s):  
E. A. Dunworth ◽  
K. Bell

AbstractThe Turiy Massif, on the southern coast of the Kola Peninsula, consists of five intrusive complexes containing a variety of carbonatites, phoscorites, melilitolites, ijolites and pyroxenites. Petrographic and mineralogical studies of the different rocks show that the samples are texturally heterogeneous. Minerals including apatite, garnet, magnetite, melilite, mica and pyroxene, show systematic variations in composition relating to the rock type in which they occur. Compositional similarities and/or distinct trends are seen in the mineral compositions within the each of the pyroxenite-melilitolite, and melteigite-ijolite rock series, indicating linked petrogenetic histories within each of the two series. The carbonatites from the northern complex may be related to nearby melilitolites, but the central complex carbonatites and phosocorites do not bear any mineralogical (or isotopic) similarities to any of the silicate rocks within the massif.


1991 ◽  
Vol 128 (4) ◽  
pp. 345-354 ◽  
Author(s):  
G. I. Alsop

AbstractPre-Caledonian basement is juxtaposed with an inverted Upper Dalradian cover sequence along the Lough Derg Slide, in south Donegal, northwest Ireland. Shear-sense criteria indicate that the Dalradian Succession is translated via oblique dextral thrusting over high pressure granulite facies basement in the footwall. Crustal thickening induced by large scale folding associated with this ductile thrusting resulted in mid-amphibolite facies metamorphism adjacent to the sole of the Dalradian nappe. Subsequent to peak metamorphism, the overthickened Dalradian cover sequence suffered heterogenous deformation associated with ductile extension concentrated in the strain-softened mylonites of the hangingwall. The oblique ductile thrusts initiated during crystal thickening were reactivated in a normal sense. Pre-existing fold axes rotated towards the extensional transport direction, which is marked by a secondary stretching lineation with associated S–C fabrics. Ductile extension and hangingwall collapse are considered to be related to gravitational instability induced by the earlier crustal thickening episode.


Sign in / Sign up

Export Citation Format

Share Document